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Abstract

While the literature concerned with the predictability of stock returns is huge, sur-
prisingly little is known when it comes to role of the choice of estimator of the predictive
regression. Ideally, the choice of estimator should be rooted in the salient features of the
data. In case of predictive regressions of returns there are at least three such features;
(i) returns are heteroskedastic, (ii) predictors are persistent, and (iii) regression errors
are correlated with predictor innovations. In this paper we examine if the accounting of
these features in the estimation process has any bearing on our ability to forecast future
returns. The results suggest that it does.
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Keywords: Predictive regression; Stock return predictability; Heteroskedasticity; Predic-
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1. Introduction

The use of financial ratios to predict returns has attracted much attention, and many

studies have shown that ratios such as dividend–price, price–earnings, dividend–payout

and book-to-market are able to predict future stock returns (see for example Campbell
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and Shiller, 1988a, 1988b, 1998; Fama and French, 1988; Kothari and Shanken, 1997; La-

mont, 1998; Chen, 2009).1 The prevailing tone in the literature is perhaps best summa-

rized by Lettau and Ludvigson (2001, page 842): “It is now widely accepted that excess

returns are predictable by variables such as dividend–price ratios, earnings–price ratios,

dividend–earnings ratios, and an assortment of other financial indicators.”

However, while there is some evidence of predictability, there is also evidence to the

contrary, and in recent years this has become a major source of tension in the literature.

In particular, while most evidence in favor of predictability are based on in-sample tests,

the little out-of-sample evidence that exists is mainly negative. This disparity makes an

overall assessment of return predictability difficult. The following passage, taken from

Welch and Goyal (2008, page 1455), serves as an illustration: “The literature is difficult

to absorb. Different articles use different techniques, variables, and time periods. Re-

sults from articles that were written years ago may change when more recent data is

used. Some articles contradict the findings of others. Still, most readers are left with the

impression that ‘prediction works’ – although it is unclear exactly what works.”

In an attempt to sort out “what works”, Welch and Goyal (2008) reconsider much of

the empirical evidence reported in the literature. They find that most commonly used

predictors are unable to deliver consistently superior out-of-sample forecasts of the US

equity premium relative to a simple forecast based on the historical average. Similar

conclusions are drawn by Bossaerts and Hillion (1999), who did not find any evidence

of out-of-sample predictability in a collection of industrialized countries for a number

of predictors. Hence, based on these results it would appear as that nothing works.

Amid this debate, in this paper we ask to what extent the out-of-sample forecasting

performance is influenced by the choice of estimator of the predictive regression? This

is a relevant question, because some of the differences in the literature may well be due

to estimation problems. Indeed, as Rapach et al. (2010, page 288) point out:

The lack of consistent out-of-sample evidence in Welch and Goyal indicates

the need for improved forecasting methods to better establish the empirical

reliability of equity premium predictability.

1There is a related branch of the literature which considers currency volatility predictability (see Scott
and Tucker, 1989) and whether stock markets predict real activity (see Choi et al., 1999).
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One of the potential problems is that many of the predictors are highly persistent,

and their innovations tend to be correlated with return innovations. As Stambaugh

(1999) shows, this combination of persistency and endogeneity can be quite devastat-

ing in that it induces a small-sample bias in the conventional ordinary least squares

(OLS) estimator. Another potential problem is that returns are highly volatile. Indeed,

one of the most well-documented features of financial time series is that returns are

highly heteroskedastic. Thus, even if returns are predictable, to the extent that the het-

eroskedasticity is strong enough to dwarf the signal coming from the predictors, this

might be difficult to detect.

Our approach to this issue is as follows. We consider monthly US time series data

covering the period January 1871 to December 2008. The variables included are excess

returns, the dividend–price ratio (DP), dividend yield (DY), the earnings–price ratio

(EP), and the dividend–payout ratio (DE). Three estimators are applied to these data; (1)

the OLS estimator, (2) the bias-adjusted OLS (AOLS) estimator of Lewellen (2004), and

(3) the feasible generalized least squares (FGLS) estimator of Westerlund and Narayan

(2011). The first estimator is included because it is the workhorse of the industry, the

second is included because of its popularity, and the third is included because it is rel-

atively new and therefore represents the state of the art. The difference between the

estimators lies in their ability to accommodate possible heteroskedasticity, endogene-

ity and persistency of the regressor. While the OLS estimator is least general and does

not account for any of these features, FGLS estimator is most general and accounts for

all three features. The AOLS estimator lies somewhere in between and corrects for the

endogeneity and persistency of the regressor.

The results suggest that the choice of estimator does make a difference, and that the

FGLS estimator generally performs best. The results are shown to be significant not

only from a statistical point of view, but also from an economic point of view. More-

over, while there is some variation coming from the choice of predictor and forecasting

horizon, our results seem to be rather robust to the choice of sample period.

2. Econometric discussion

2.1. The predictive regression
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As mentioned in Section 1, certain empirical features that characterize predictive

regressions can make inference difficult and it is therefore important that these features

are acknowledged already at the modeling stage. Our starting point is the following

system of equations:

rt+h = α + βxt + ϵt+h, (1)

xt+1 = µ(1 − ρ) + ρxt + εt+1, (2)

where |ρ| ≤ 1. This is the prototypical predictive regression model that has been widely

used in the financial economics literature, in which xt is a variable believed to be able

to predict the h-period-ahead value of excess returns, rt+h. In our case, xt is either DP,

DY, EP or DE. Thus, in this model testing the null hypothesis of no predictability is

equivalent to testing the restriction that β = 0. As in previous studies, it is reasonable to

assume that the correlation between ϵt and εt is negative. For example, if xt is DY, then

an increase in the stock price will lower dividends and raise returns. In order to capture

endogenous effects of this sort, the following relationship between the error terms is

assumed:

ϵt = γεt + ηt, (3)

where εt and ηt are mean zero and uncorrelated with each other. The variances of these

errors are typically assumed to be constant over time. However, this does not fit well

with the fact that returns are almost always found to be heteroskedastic. The most

popular approach by far to model this type of behavior is to assume an autoregressive

conditional heteroskedasticity (ARCH) model, which in the case of ηt can be written as

var(ηt|It−1) = σ2
ηt = λ0 +

q

∑
j=1

λjη
2
t−j, (4)

where It is the information available at time t. A similar equation is assumed to apply

to var(εt|It−1) = σ2
εt. Provided that λ0 > 0 and ∑

q
j=1 λj < 1, this implies that the

unconditional variance of ηt can be written in terms of the coefficients of (4) as var(ηt) =

σ2
η = λ0

(1−∑
q
j=1 λj)

with var(εt) = σ2
ε having a similar representation. The unconditional

variance of the composite error term ϵt can now be written as var(ϵt) = σ2
ϵ = γ2σ2

ε + σ2
η .

Having laid out the model of interest, we now turn to the effects of endogeneity,

persistency and ARCH:
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• The correlation between ϵt and εt is given by ρϵε = γ σε
σϵ

and is, as already men-

tioned, a source of major complication. The reason is that if ρϵε ̸= 0, then xt is no

longer exogenous, thereby violating one of the most important OLS assumptions;

if xt is endogenous the OLS estimator of β is no longer unbiased.

• The main effect of the persistency of xt is to aggravate the OLS bias caused by

the endogeneity. In fact, as Stambaugh (1999) shows, the OLS bias is given by

−γ(1 + 3ρ)/T, suggesting that while decreasing in T, the bias is increasing in γ

and ρ. Moreover, the persistency is only a problem to the extent that xt is indeed

endogenous such that γ ̸= 0.

• While unattended endogeneity and persistency are matters of bias, unattended

ARCH is a matter of efficiency. Indeed, one of the most well-known results from

classical regression theory is that OLS is inefficient in the presence of heteroskedas-

ticity. In agreement with this, Westerlund and Narayan (2011) show that there are

important efficiency gains to be made by accounting for the ARCH information.

2.2. The estimators

In view of the above discussion, the question of how to estimate the predictive re-

gression in (1) naturally arises. One way is to simply ignore the issues of bias and

inefficiency altogether, and run OLS. However, given the potential problems involved,

this approach is clearly suboptimal, and Lewellen (2004) has therefore proposed a bias-

adjusted estimator that deals with the first issue. The idea is to make (1) conditional on

εt by substituting from (2) and (3), leading to the following augmented test regression:

rt+h = θ + βxt + γ(xt+h − ρxt+h−1) + ηt+h, (5)

where θ = α− γµ(1− ρ). But while this removes the correlation between the regression

error and the regressors, since ρ is unknown, (5) is not really feasible, and Lewellen

(2004) therefore suggests replacing the true ρ with a “guess”. Let ρ0 denote this guess.

The feasible version of (5) can be written as

rt+h = θ + β0xt + γ(xt+h − ρ0xt+h−1) + ηt+h, (6)
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where β0 = β − γ(ρ − ρ0) has the interpretation of a “bias-adjusted slope coefficient”,

which can be estimated by simply applying OLS to (6). The FGLS estimator is based on

the same regression and is therefore very similar in spirit. One difference between the

two estimators is the treatment of the persistency of xt. In particular, while Lewellen

(2004) assumes that ρ0 = ρ = 0.9999, Westerlund and Narayan (2011) assume that

ρ = 1 + c
T , where c ≤ 0 is a drift parameter that measures the degree of persistency

in xt.2 If c = 0, then xt has an exact unit root, whereas if c < 0, then xt is locally

stationary in the sense that ρ approaches one from below as T increases. Thus, while

Lewellen (2004) requires xt to be stationary, which is quite restrictive, Westerlund and

Narayan (2011) do not. Moreover, even if xt happens to be stationary, the Lewellen

(2004) assumption that ρ takes on the value 0.9999 is completely arbitrary.3

Another difference is the treatment of potential ARCH. As already mentioned, the

AOLS estimator is based on running OLS on (6) with ρ0 = 0.9999, which means that

any information contained in the ARCH structure of the errors is effectively ignored.

The FGLS estimator, on the other hand, weights all the data by 1
σηt

and is therefore able

to exploit this information. However, it is still the same equation that is estimated,

although in this case with ρ0 = 1. Note, though, that in this case the fact that ρ0 is set to

1 does not mean that ρ must be 1 too; it just means that under the above “local-to-unity”

assumption ρ is so close to 1 that we can just as well set ρ0 = 1.

2.3. Out-of-sample forecasting

As alluded in Section 1, most existing evidence of the predictability of returns is

based on in-sample results and there are only a hand-full of studies that consider out-of-

sample results. The idea of out-of-sample forecasting is to save the last P observations

for the forecasting evaluation and to fit the predictive regression to the first T0 = T −
P observations only. One then generates P forecasts with recursively updated model

estimates.

To illustrate the effect of the choice of estimator, assume for simplicity that α = 0

2For similar assumptions, see Campbell and Yogo (2006) and the references provided therein.
3The price of the greater flexibility of the local-to-unity specification of ρ is that the theoretical anal-

ysis becomes more involved. In particular, it introduces c as an additional nuisance parameter in the
asymptotic distribution of the estimated predictive slope.
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and denote by β̂AOLS and β̂FGLS the AOLS and FGLS estimators of β, respectively. The

associated predictive values are denoted r̂AOLS
t+h = β̂AOLSxt and r̂FGLS

t+h = β̂FGLSxt, where

t = T0 + 1, ..., T. In this notation the OLS-based forecast error can be written as

r̂AOLS
t+h − rt+h = (β̂AOLS − β)xt + ϵt+h

with a similar representation applying to r̂FGLS
t+h − rt+h. The ratio of the mean squared

forecast errors (MSFE) therefore becomes

E[(r̂FGLS
t+h − rt+h)

2]

E[(r̂AOLS
t+h − rt+h)2]

=
E[(β̂FGLS − β)2x2

t ] + σ2
ϵ

E[(β̂AOLS − β)2x2
t ] + σ2

ϵ

+ op(1),

where the op(1) term is negligible as T tends to infinity. In the presence of ARCH the

FGLS estimator is more efficient than the AOLS estimator, suggesting that E[(β̂FGLS −
β)2x2

t ] should in general be smaller than E[(β̂AOLS − β)2x2
t ]. In order to appreciate this,

note that

E[(β̂FGLS − β)2] = E[(β̂FGLS − E(β̂FGLS) + (E(β̂FGLS)− β))2]

= E[(β̂FGLS − E(β̂FGLS))
2] + (E(β̂FGLS)− β)2,

where the first term on the right-hand side is simply the variance of the FGLS estimator,

while the second is the squared bias. A similar representation holds for the AOLS esti-

mator. Hence, the relative MSFE depends on both the efficiency and bias of the two esti-

mators. The FGLS is more efficient, which means that the MSFE ratio should be smaller

than one. However, because of the consistency of the two estimators, (β̂FGLS − β) and

(β̂AOLS − β) will tend to zero as T grows, which means that the MSFE ratio is asymp-

totically one. Thus, while the FGLS is expected to perform better in small samples, in

large samples this is not the case.

It should be noted here that while the OLS estimator has been used before in out-of-

sample studies of return predictability, to the best of our knowledge, this is the first time

the AOLS and FGLS estimators has been used for this purpose. In particular, while the

work of Lewellen (2004) has attracted much attention, what researchers tend to use is

his predictability test, and not the associated slope estimator. Westerlund and Narayan

(2011) also focus on the testing problem. But, again, there is nothing that prevents us

from using their proposal for forecasting purposes. Thus, while first considered by
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Lewellen (2004), and Westerlund and Narayan (2011), in these papers the AOLS and

FGLS estimators are used mainly for the purpose of constructing t-statistics for the null

hypothesis of no predictability, and not for point estimation and/or forecasting.

2.4. Simulation evidence

A small-scale simulation study was conducted to assess the relative performance of

the three estimators considered. The conditional mean equation is generated from (1)–

(4) with α = h = 1, µ = 0 and ηt ∼ N(0, σ2
ηt) and εt ∼ N(0, σ2

εt). The ARCH equations

driving σ2
ηt and σ2

εt are assumed to be of the first order with equal intercept and slope

coefficients, henceforth denoted λ0 and λ1, respectively. Also, in order to ensure that

σ2
η = σ2

ε = 1 are kept fixed, we set λ0 = 1 − λ1. The value of β did not affect the results

and we therefore set β = 1. Also, as for ρ, we follow Westerlund and Narayan (2011),

and set ρ = 1 + c
T , where c can be either zero, such that xt is unit root non-stationary, or

−2, such that xt is locally stationary.

By setting λ1 and γ, we can control the degree of ARCH and endogeneity. The

values considered for γ are zero and −2, corresponding to the cases of no and strong

endogeneity. Note in particular that γ = −2 implies ρϵε ≃ −0.9, which is consistent

with the largest correlations in our data, and also with the parametrization of Lewellen

(2004, Figure 1). The values considered for λ1 are zero and 0.6, corresponding to the

cases of no and strong ARCH effects. In fact, since under normality the condition for the

standardized forth moments of ηt and εt to be finite is given by α1 < 1/
√

3 ≃ 0.6, in the

high ARCH effect case the kurtosis is borderline infinite. Since the asymptotic theory

of the estimators considered here assumes the existence of at least fourth moments,

λ1 = 0.6 provides a limit for how much ARCH we can reasonably allow for without

risking non-sensical results. The number of replications is set to 3, 000.

The results from the average of the simulated root-MSFE ratios for the FGLS esti-

mator versus the OLS and AOLS estimators are reported in Table 1. The findings are

largely as expected. First, all three estimators seem to perform very similarly when

λ1 = γ = 0. Secondly, when γ = −2 we see that while the FGLS and AOLS estimators

tend to perform similarly, the OLS estimator is strictly dominated by the FGLS estima-

tor, suggesting that the accounting for endogeneity can be important in practice. Third,
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when λ1 = 0.6 the FGLS estimator generally outperforms the competition, meaning

that the accounting for ARCH is also important. The extent of the performance gain is

decreasing in T, which is in agreement with the discussion of Section 2.3.

3. Empirical results

3.1. Data

The data used are taken from Robert Shiller’s webpage and are for the period Jan-

uary 1871 to December 2008. We download data on real returns, real earnings and real

dividends on the S&P 500 index. Excess returns is computed by subtracting the three

month Treasury bill rate from returns. The predictors are defined as follows:

• DP is defined as the difference between log dividends and the log of stock prices,

where dividends are measured using a one-year moving sum;

• DY is the difference between log dividends and the log of the one-period lagged

stock price;

• EP is the difference between log earnings and the log of stock prices, where earn-

ings are measured using a one-year moving sum;

• DE is the difference between log dividends and log earnings.

From the full sample we consider three out-of-sample forecasting periods; (1) Jan-

uary 1965–December 2008, (2) January 1976–December 2008, and (3) January 2001–

December 2008. Our choice of considering subperiods is motivated by the previous

literature arguing that out-of-sample predictability may be driven in part by the choice

of the sample period (see for example Rozeff, 1984; Fama and French, 1988; Lettau and

Nieuwerburgh, 2008; Boudoukh et al., 2008). Because this choice is arbitrary, it leaves

open the question of data mining. The post-1976 period is motivated by Welch and

Goyal’s (2008) observation that following the oil price shock of the mid-1970’s, the pre-

dictability of many economic variables weakened. The motivation for the post-2001

period is to gauge whether return predictability has been affected by the “technology

bubble” of the last decade (Rapach and Wohar, 2006).
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3.2. Preliminary results

When we examine some selected descriptive statistics of the data, we make a num-

ber of observations suggesting that the three out-of-sample forecasting periods consid-

ered feature different behavior. In Table 2, we report the mean, coefficient of variation,

skewness, kurtosis, and autocorrelations based on the squared variables. These statis-

tics are reported for the full 1871–2008 period as well as for the three out-of-sample

periods. Consider returns. Over the 1965–2008 period returns were negative, they be-

came positive in the 1976–2008 period, and in the most recent 2001–2008 period average

returns were again negative. We also see that returns were lowest in the most recent

period. Also, the volatility of returns has declined substantially over the years. A simi-

lar pattern emerges for the four predictors; the variables have on average become more

negative over the years and their volatility has declined.

In the last four columns of Table 2, we report the autocorrelations associated with the

square of each of the variables, which can be thought of as estimated ARCH coefficients.

We notice that while for the predictors the autocorrelations are significant, for returns,

except when considering the full 1871–2008 period, there is a clear tendency for the p-

values to increase with more distant lags. The evidence of ARCH is therefore stronger

for the predictors than for returns. In any event, the implication here is that both the

predictors and returns are characterized by ARCH.

In Table 3 we report some augmented Dickey–Fuller (ADF) test results. The test is

implemented both with and without a linear time trend; however, since the results were

very similar we only report the results for the model with a constant but no trend. The

order of the lag augmentation is chosen by the Schwarz information criterion with a

maximum of eight lags. The results reveal that while for the full sample there is strong

evidence against the unit root null hypothesis for all four predictors, for the three sub-

periods there is no such evidence. By comparison, the unit root null is consistently

rejected for returns. In other words, while returns can be considered as stationary, the

predictors are highly persistent and borderline unit root non-stationary, suggesting that

our preference of modeling xt as a near unit root variable seems quite reasonable.

In order to also get a feeling for the extent of the endogeneity we computed the

correlation between the OLS residuals of the predictive regression in (1) and the first
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difference of the predictors. DP leads to the largest correlation of −0.95, while DE leads

to the smallest correlation of −0.12. DY and EP lie in between with correlations of −0.29

and −0.80, respectively. Since all correlations are also significant, even at the 1% level,

we take this as strong evidence of endogeneity.

The evidence reported so far suggests that (1) the predictors are highly persistent, (2)

the residuals of the predictive regression are correlated with the first-differenced predic-

tors, and (3) the data are heteroskedastic. This means that OLS is not only inefficient but

also biased, making it a poor candidate not only for inference but also for forecasting

(see for example Lanne, 2002). We are therefore tempted to disregard the OLS estimator

already at the outset. For completeness, however, in Sections 3.3 and 3.4 the OLS re-

sults are included, although readers are advised to interpret them with care. The AOLS

estimator is unbiased, which makes it a better choice than OLS; however, it is still in-

efficient. The FGLS estimator is the only one that is expected to be both unbiased and

efficient, and is expected to lead to superior forecasting performance when compared

to its two competitors.

3.3. Out-of-sample results

The evaluation of the out-of-sample forecasting results is done on a pair-wise basis

using the well-known Theil U and Diebold–Mariano statistics, and for four horizons;

h = 1, h = 3, h = 6 and h = 12. The forecasting is carried out as explained in Section

2.3, by recursively expanding the sample. The OLS and AOLS estimators are imple-

mented as described in Section 2.2. As for the FGLS estimator, the weight 1
σηt

needs to

be replaced with an estimate. The approach used here is the same as the one in West-

erlund and Narayan (2011), and proceeds as follows. We begin by applying OLS to

(6) with ρ0 = 1. This gives us the OLS estimator η̂t of ηt. The estimator of σ2
ηt is then

obtained as the fitted value from a regression of η̂2
t onto a constant and q of its own

lags, where q is selected using a recursive general-to-specific t-test on the last lag with a

significance level of 5%.4

4The idea here is to simply rewrite (4) as η2
t = λ0 + ∑

q
j=1 λjη

2
t−j + (η2

t − σ2
ηt), where (η2

t − σ2
ηt) is a

martingale difference sequence. This suggests that a natural approach to obtain σ̂2
ηt is to first obtain η̂t

and then to retrieve σ̂2
ηt as the fitted value from a regression of η̂2

t onto (1, η̂2
t−1, ..., η̂2

t−q). This procedure
is explained in Westerlund and Narayan (2011).
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We begin by considering the results reported in Table 4 for the comparison between

the AOLS and OLS estimators. If the Theil U and Diebold–Mariano statistics are close

to one and zero, respectively, then the two estimators are equally good at predicting

returns, whereas if the statistics are larger than these values, OLS is best. When we use

DP as a predictor, we see that there is not much evidence against the null hypothesis

of equal predictability. The Theil U and Diebold–Mariano statistics are generally larger

than one and zero, respectively, suggesting that OLS performs best; however, the differ-

ence is not large enough for a rejection by the Diebold–Mariano test. This means that

both estimators have equal predictive power. This is true for all horizons. The conclu-

sion for DY is the same, although in this case the evidence leans more towards the AOLS

estimator with the Theil U and Diebold–Mariano statistics being smaller than one and

zero, respectively.

While still weak the evidence against the equal predictability null is stronger for EP

and DE. For EP we count one rejection at the 10% level, at the h = 1 horizon in the

most recent 2001–2008 out-of-sample period. Since both statistics are larger than their

expected values under the null, OLS is preferred. The relatively good performance of

the OLS estimator is confirmed by the DE results, but now we count three rejections at

the same level of significance.

Consider next the results reported in Table 5 for the comparison between the FGLS

and OLS estimators. Now there are as many as seven rejections. However, the evidence

is rather mixed and there is no clear-cut winner. For example, in case of DP the Diebold–

Mariano statistic results in two rejections, one favors OLS, while the other favors the

FGLS estimator. This picture is reinforced if we look at the magnitude of the Theil U

and Diebold–Mariano statistics; there are about as many instances when they are larger

than one and zero as when they are less than one and zero. By contrast, the results for

DY and EP are more supportive of the FGLS estimator, especially when h = 12. The

overall impression so far is therefore that the FGLS estimator performs best. However,

the results for DE are more favorable towards OLS with two rejections in its favor.

Our last comparison is between the FGLS and AOLS estimators. The results are

reported in Table 6. The first thing to notice is that the Theil U and Diebold–Mariano

statistics are generally lower than one and zero, respectively, which in this case means
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evidence in favor of the FGLS estimator. Overall, we count seven rejections at the 10%

level, of which six provide evidence in support of FGLS. Three of these are for DP, one

is for DY and the remaining two are for DE. We also see that the evidence in favor of the

FGLS estimator is stronger at shorter horizons than at longer horizons.

It should be pointed out that while the OLS estimator actually turns out to perform

rather well here, as noted in Section 3.2, it is inefficient and biased, which do not directly

inspire confidence in a potential investor. We will therefore not consider it any further.

3.4. Economic significance

The goal of this section is to analyze any economic significance available to investors

from the forecasting performance of the FGLS, AOLS and OLS estimators. Our ap-

proach is similar to the one of Rapach et al. (2010), Campbell and Thompson (2008),

and Marquering and Verbeek (2004). More specifically, we first compute the average

utility for a mean-variance investor with relative risk aversion parameter ϕ who allo-

cates her portfolio between stocks and risk-free bills using h-period-ahead forecasts of

returns based on the FGLS estimator. The utility function is assumed to be given by

E(rt+h|It) − ϕ
2 var(rt+h|It), which can be mimicked out-of-sample using the estimated

mean and variance of the FGLS-based return forecasts. We then compute the average

utility for the same investor when using the AOLS and OLS estimators to obtain the

forecasts.

We compute annual average utilities based on two risk aversion parameters, ϕ = 3

and ϕ = 6, and two horizons, h = 1 and h = 12. The utility gain is estimated as the

difference in utility between the FGLS and AOLS or OLS forecasts, and we multiply

this difference by 1,200 to express it in average annualized percentage return. The util-

ity gain can be interpreted as the portfolio management fee that an investor would be

willing to pay to have access to the former estimator.

The results are reported in Table 7. We begin by considering the results from the

comparison with the AOLS estimator. Earlier we showed that the FGLS estimator re-

sults in more precise forecasts than the AOLS estimator. If this is true use of the FGLS

estimator should lead to positive utility gains, and this is exactly what we see in the

table. We also see that the utility gains associated with the FGLS forecasts can be quite

13



sizable, especially when ED is used as a predictor, in which case some the utility gains

are well above 1%. The only exception is for DE in the 1965–2008 period, in which

case the investor would be better off by using the AOLS estimator. However, given the

smallness of the utility gain in this case, one could probably just as well use the FGLS

estimator.

Consider next the utility gains from using FGLS rather than OLS. Two observations

are worth highlighting. First, most utility gains are positive, favoring the FGLS estima-

tor over the OLS estimator. Moreover, these results are robust to different out-of-sample

periods, horizons, and risk aversion parameters. Second, the only predictor for which,

at least to some extent, the OLS is relatively favorable is DY. We notice that only when

the risk aversion parameter is set to three, over both the short and long horizons utility

gains are negative suggesting that the OLS estimator is relatively better. However, we

note that this result is reversed in favor of the FGLS when the risk aversion parameter

is set to six, suggesting that the results in favor of OLS with the DY predictor are not

robust.

3.5. Robustness checks

In this section we check the robustness of our results in two regards. First, we exam-

ine whether the superior performance of the FGLS estimator remains also when com-

pared to the historical average. Second, we examine if the results are robust to the choice

of lag length.

Many studies of predictive ability take as their benchmark the historical average

forecast (see for example Rapach et al., 2005; Flood and Rose, 2010). As a first robust-

ness check we therefore compare this forecast with that of our FGLS estimator, which

we have demonstrated to perform best among the estimators considered here. One

problem towards this end is that because the models are now nested the conventional

Diebold–Mariano statistic does not have its usual asymptotic standard normal distribu-

tion (see Clark and McCracken, 2001; McCracken, 2007). In order to account for this fact

we follow Rapach and Weber (2004), and Rapach et al. (2005), among others, and use

the MSE–F and ENC–NEW statistics of McCracken (2004), and Clark and McCracken

(2001), respectively. Moreover, following the recommendation of Clark and McCracken

14



(2004) the p-values are obtained by using the bootstrap.5

The results are reported in Table 8. The first thing to notice is that most of the test

statistics are positive, suggesting that the FGLS estimator generally outperforms the his-

torical average. The evidence is particularly strong for DP and DY, in which case there

is significant evidence in favor of FGLS at all horizons considered. The evidence for EP

and DE is more mixed with a majority of p-values being greater than 0.1, suggesting

that neither model is superior.

Consider next the effect of the selection of the number of lags to use in the estimation

of the ARCH equation. In the second half of Table 3, we report some ARCH test results.

Essentially, in order to remove the effect of serial correlation, we begin by running an

autoregression with 12 lags. Following this, we undertaken a residual-based Lagrange

multiplier test for heteroskedasticity. The null hypothesis is that there is no ARCH ef-

fects. Two lag lengths are considered, six and 12. According to the results, the null of

no ARCH must be rejected for both lag lengths and for all variables. The only exception

is for returns in the most recent 2001–2008 forecasting period, where the null cannot be

rejected at the 10% level.

The main implication here is that an ARCH model might not be enough to capture

the heteroskedasticity. As a response to this, Westerlund and Narayan (2011) consider a

generalized ARCH (GARCH) model, which they show can be approximated by means

of a high-order ARCH model. As a robustness check, in this section we therefore con-

sider an ARCH model with 12 lags and compare the predictive performance of the re-

sulting FGLS estimator with that of the AOLS estimator.

The results for the comparison between the GARCH–FGLS and AOLS estimators are

not reported but we briefly describe them. As in Table 6, we find that the Theil U and

Diebold–Mariano statistics are generally lower than one and zero, respectively, which

we take as evidence in favor of the FGLS estimator. In fact, the results are very similar

to those reported in Table 6. The only main exception is DE, for which the evidence in

support of the AOLS estimator is now much stronger than before with four rejections at

the positive side.

As a final robustness test, at a suggestion of a referee of this journal, we checked the

5A detailed description is available upon request from the corresponding author.
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relative out-of-sample forecasting performance of the FGLS estimator when fixing ρ0 in

the same way as in AOLS. The results for the case when h = 1 are reported in Table

9. Consistent with the results based on assuming that is local-to-unity, we see that the

Theil and Diebold–Mariano statistics tend to favor the FGLS estimator when using DP,

DY, and EP as predictors. This is true regardless of the out-of-sample forecasting period

considered.

4. Concluding remarks

This paper studies the relative forecasting performance of three estimators, namely

the OLS, AOLS and FGLS estimators. While OLS is least general in the sense that it

ignores the problems of heteroskedasticity, and predictor endogeneity and persistency,

the FGLS estimator is most general and accounts for all three problems. The AOLS

estimator accounts for the endogeneity and persistency of the predictor, and therefore

lies somewhere in between. The first problem is a matter of bias, while the second is

a matter of efficiency, but both are expected to be important for forecasting purposes.

Of course, in-sample the OLS estimator is expected to perform best notwithstanding its

potential bias and lack of efficiency. The relative out-of-sample performance of these

estimators is, however, still an open issue.

The data we use include observations on excess returns on the S&P 500 index and

four common predictors, ED, DY, EP and DE. The sample starts in January 1871 and

ends in December 2008, which means that we have no less than 1,655 monthly obser-

vations to our disposal. The results from the pair-wise out-of-sample forecasting eval-

uation suggest that the FGLS estimator generally performs best. The results from the

comparison between the FGLS and AOLS estimators are particularly clear with the for-

mer estimator having the best performance by far. The results from the OLS comparison

are more mixed, although overall the evidence tend to lean towards the FGLS estima-

tor, especially when considering a relatively long forecasting horizon. This conclusion

is robust to choice of out-of-sample period.

In an attempt to quantify the economic significance of the results from the forecasting

comparison, we examine whether a mean-variance investor would be better off in terms

of utility by using the FGLS estimator rather than the AOLS estimator. The results
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suggest that she will.
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Table 1: Simulated root-MSFE ratios.

c = 0 c = −2
λ1 γ T OLS AOLS OLS AOLS
0 0 100 1.008 1.005 1.002 1.001
0 0 200 1.001 1.001 1.000 1.000
0 0 400 1.001 1.000 1.000 1.000
0 −2 100 0.902 1.003 0.978 1.001
0 −2 200 0.962 1.001 0.992 1.000
0 −2 400 0.987 1.000 1.000 1.000

0.6 0 100 1.001 1.000 1.003 1.003
0.6 0 200 0.999 0.999 0.999 0.998
0.6 0 400 0.999 0.999 1.000 1.000
0.6 −2 100 0.888 0.997 0.978 1.001
0.6 −2 200 0.957 0.998 0.988 0.999
0.6 −2 400 0.986 0.999 0.998 1.000

Notes: The numbers in the table are the average of the simulated
root-MSFE ratios for the FGLS estimator versus the OLS and AOLS
estimators. λ1 and γ determine the extent of ARCH and endogeneity,
respectively. c is the drift in the local-to-unity specification of xt.
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Table 3: ADF and ARCH test results.

Variable ADF p-value ARCH(6) p-value ARCH(12) p-value
1871–2008

Returns −26.16 0.00 32.35 0.00 24.66 0.00
DP −2.71 0.07 1054.00 0.00 580.00 0.00
DY −2.90 0.05 897.00 0.00 490.00 0.00
EP −2.80 0.06 1129.00 0.00 573.00 0.00
DE −3.25 0.02 3342.00 0.00 1673.00 0.00

1965–2008
Returns −17.60 0.00 2.52 0.02 1.62 0.08

DP −1.29 0.64 318.60 0.00 159.60 0.00
DY −1.28 0.64 264.30 0.00 132.40 0.00
EP −0.36 0.91 255.70 0.00 127.10 0.00
DE −0.19 0.94 4308.00 0.00 2559.00 0.00

1976–2008
Returns −15.14 0.00 2.51 0.02 1.63 0.08

DP −1.06 0.73 205.70 0.00 99.79 0.00
DY −1.06 0.73 152.40 0.00 73.49 0.00
EP −0.12 0.95 161.90 0.00 79.51 0.00
DE 0.00 0.96 3271.00 0.00 1698.00 0.00

2001–2008
Returns −8.05 0.00 0.70 0.65 0.68 0.76

DP 0.91 1.00 79.59 0.00 36.04 0.00
DY 0.97 1.00 46.37 0.00 22.06 0.00
EP −0.17 0.94 32.23 0.00 12.92 0.00
DE 0.88 1.00 1036.00 0.00 535.30 0.00

Notes: ADF refers to the augmented Dickey–Fuller test, and ARCH(q) refers to
a Lagrange multiplier test of the zero slope restriction is an ARCH regression of
order q.
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