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Abstract

The difficulty of predicting stock returns has recently motivated researchers to start

looking for more powerful tests, and the current paper takes a step in this direction.

Unlike existing tests, the test proposed here exploits the information contained in the

heteroskedasticity of returns, which is expected to lead to higher power, a result that is

confirmed by our results. In order to also maintain good size accuracy, subsample critical

values are used.
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1 Introduction

Consider the vector (yt, xt)′, observable for t = 1, ..., T time periods. The data generating

process (DGP) of this vector is given by

yt = θ + βxt−1 + ϵy,t, (1)

xt = µ(1 − ρ) + ρxt−1 + ϵx,t, (2)

ϵy,t = γϵx,t + ϵy.x,t, (3)
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under research grant number P2005–0117:1.
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where x0 = 0, and ϵx,t and ϵy.x,t are mean zero disturbance terms that are independent of

each other. Equation (1) is the prototypical predictive regression model that has been widely

used in the finance literature to test whether stock returns (yt) can be predicted using some

other macroeconomic or financial variable (xt). The standard econometric approach is to fit

(1) by least squares (LS), and to test whether β = 0 using a conventional t-test. The main

finding of such tests is that the observed value of the t-statistic is typically greater than two.

Most earlier studies, which tended to rely on normal critical values, were therefore able to

reject the null hypothesis. However, it has since then become clear that the standard distribu-

tion theory for stationary processes can be quite misleading when testing the predictability

of returns, and that some of the rejections might actually be due to size distortions. The lit-

erature has identified two major problems, which both stems from the observed behavior of

the predictors.

The first problem is if γ ̸= 0, such that ϵx,t and ϵy,t are correlated, which raises the issue

of endogeneity bias. For example, if xt is dividend yield, then an increase in the stock price

will lower dividends and raise returns.

The second problem is that, although according to theory many of the predictors used

should be stationary, empirically most predictors are only slowly mean-reverting, and the

evidence that they do not contain unit roots is weak. Standard asymptotic theory, which

presumes that |ρ| < 1, is therefore likely to be inappropriate. In fact, even if {xt}T
t=1 is

known to be stationary, if ρ ≈ 1, the standard asymptotic theory is likely to provide a poor

approximation in small samples (Elliott and Stock, 1994).

These econometric problems have recently caused some researchers to consider an alter-

native framework based on local asymptotic theory (see, for example, Cavanagh et al., 1995;

Elliott and Stock, 1994; Lanne, 2002; Torous et al., 2004). This theory has not only made it

possible to study in a coherent framework the effects of both endogeneity (γ ̸= 0) and near

unit roots (ρ ≈ 1), but has also led to the development of several new, improved, tests, such

as the uniformly most powerful tests of Lewellen (2004), and Campbell and Yogo (2006) that

make better use of the predictor information.

The point here is that these developments all stem from the observed behavior of xt. In

view of this, it is quite surprising to find that there has been no attempts to account for the

part of the variation in returns that cannot be attributed to xt. In fact, most studies tend to

view this variation as pure noise. The following quotation, taken from Campbell and Yogo
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(2006, page 29), serves as an illustration:

A regression of stock returns onto a lagged financial variable has low power

because stock returns are extremely noisy. If we can eliminate some of this noise,

we can increase the power of the test. When the innovations to returns and the

predictor variable are correlated, we can subtract off the part of the innovation to

the predictor variable that is correlated with returns to obtain a less noisy depen-

dent variable for our regression.

Thus, stock returns are noisy, and by conditioning on ϵx,t, we can reduce that noise, lead-

ing to a more powerful test. But what about the part of the variation in the returns that

cannot be conditioned out in this way? In particular, what about volatility clustering, one of

most well-documented features of stock returns? Intuitively, if the endogeneity is important

for power, then there should be some merit in accounting also for heteroskedasticity. This

is a potentially very important issue, because even if returns are truly predictable, the nois-

iness of the regression error (ϵy,t) may well overwhelm the signal coming from xt, causing

deceptive inference (Ferson et al., 2003).1

Motivated by the above observation, the current paper develops a test based on gener-

alized LS (GLS). In particular, a feasible quasi-GLS (FQGLS) t-test is proposed that is robust

to misspecification of the conditional variance, and that is asymptotically equivalent to GLS

if the model is correct. We show, both analytically and using simulations, that the informa-

tion contained in the heteroskedasticity is useful, and that the power of the FQGLS test can

be increased above that achievable by existing LS-based tests that do not make use of this

information. Unfortunately, the asymptotic test depends on nuisance parameters reflecting

the persistency, endogeneity and heteroskedasticity of the data, which means that while the

test has good power properties, it can be size distorted. In order to account for this lack

of robustness, a subsample FQGLS test is proposed that has correct asymptotic size even in

the presence nuisance parameters, which stands in sharp contrast to many of the existing

Bonferroni-type tests that are known to be conservative (see, for example, Campbell and

Yogo, 2006; Cavanagh et al., 1995; Lewellen, 2004; Torous et al., 2004).

The rest of the paper is organized as follows. Section 2 outlines the FQGLS test and Sec-

tion 3 discusses the assumptions under which which we will be working. Section 4 derives
1The “spurious regression problem” in finance refers to the case when expected return is highly persistent

but this persistency is dwarfed by the noise coming from the regression error (Ferson et al., 2003).

3



the asymptotic distribution of the FQGLS t-statistic, which is compared to the asymptotic

distributions of the LS and infeasible quasi-GLS (QGLS) t-statistics. Monte Carlo and empir-

ical results are reported in Sections 6 and 7, respectively. Section 8 concludes. All proofs are

provided in Appendix.

2 Test procedure

The DGP in (1) and (2) has become very popular in recent years, and the main reason for

this is its ability to capture both the endogeneity and persistency of most commonly used

predictors. However, there is at least one empirical regularity that is not captured here,

namely, conditional heteroskedasticity. Let us therefore define

E(ϵ2
y,t|Ft−1) = σ2

y,t = γ2E(ϵ2
x,t|Ft−1) + E(ϵ2

y.x,t|Ft−1) = γ2σ2
x,t + σ2

y.x,t, (4)

where Ft is the sigma-field generated by {(xn, yn)}t
n=1.

One of the most well-known results from classical regression theory is that LS is ineffi-

cient in the presence of heteroskedasticity. Our approach is therefore based on GLS. How-

ever, since we do not assume knowledge of σ2
y,t, the conditional variance of the error term in

(1), the specific estimator considered here is more appropriately referred to as FQGLS, and

the proposed predictability test is simply the FQGLS t-statistic.

The FQGLS estimator relies on having an estimator ŝ2
y,t of σ2

y,t. In this paper ŝ2
y,t is the

fitted value from a parametric specification of the conditional heteroskedasticity, such as

an ARCH model, that is estimated using the LS residuals from (1) and (2). We do not as-

sume that the conditional heteroskedasticity estimator is consistent. Therefore, the chosen

parametric model need not be correct, as when specifying an ARCH model when the true

model is GARCH. The reason is that {ŝ2
y,t}T

t=2 is such that they approximate a stationary

Ft−1-adapted sequence {s2
y,t}T

t=2 in the sense that certain normalized sums have the same

asymptotic distribution whether ŝ2
y,t or s2

y,t appears in the sum.

As an example, assume for simplicity that θ = γ = 0 is known, such that yt = βxt−1 + ϵy,t

and σ2
y,t = σ2

y.x,t. Let ϵ̂y,t = ϵ̂y,t(β̂) = yt − β̂xt−1, where t = 2, ..., T and β̂ is the LS estimator

of β. The results allow for the case when ŝ2
y,t = s2

y,t(λ̂0, λ̂1, β̂) = λ̂0 + λ̂1ϵ̂2
y,t−1(β̂) (t = 3, ..., T)

is the fitted value from a regression of ϵ̂y,t onto a constant and ϵ̂y,t−1. While β̂ is consistent

for β, the probability limits of λ̂0 and λ̂1 are given by the “pseudo-true” values λ0 and λ1.
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Hence, in this case s2
y,t = s2

y,t(λ0, λ1, β) = λ0 + λ1ϵ̂2
y,t−1(β), where ϵ̂y,t(β) = ϵy,t; that is, s2

y,t is

just ŝ2
y,t with the estimation error eliminated.

To define ŝ2
y,t in the general case, it is convenient to introduce yd

t = yt − y and y =

∑T
t=1 yt/T with similar definitions of xd

t and xd
t−1. In this notation, ϵ̂y,t = ϵ̂y,t(β̂) = ŷd

t −

β̂xd
t−1 and ϵ̂x,t = ϵ̂x,t(ρ̂) = xd

t − ρ̂xd
t−1, where β̂ (ρ̂) is the LS slope in a regression of yd

t (xd
t )

onto xd
t−1. Let ϵ̂y.x,t = ϵ̂y.x,t(β̂, ρ̂) = ϵ̂y,t(β̂) − γ̂ϵ̂x,t(ρ̂), where γ̂ = γ̂(β̂, ρ̂) is the LS slope

in a regression of ϵ̂y,t onto ϵ̂x,t. Let m ∈ {x, y.x} and denote by ŝ2
m,t the fitted value from

a LS regression with ϵ̂2
m,t as the dependent variable. In principle, this fit can come from

any estimable regression model. The list of potential regressors is very long and includes,

for example, dummy variables, known nonlinear functions of the lags of ϵ̂2
x,t and ϵ̂2

y.x,t, and

other stationary predetermined variables. However, autoregressive (AR) models are most

common, and in this paper we therefore focus on the case when ŝ2
y.x,t = s2

y.x,t(β̂, ρ̂, λ̂y.x) and

ŝ2
x,t = s2

x,t(ρ̂, λ̂x), where

s2
x,t = s2

x,t(ρ, λx) = λ′
x êx,t(ρ), (5)

s2
y.x,t = s2

y.x,t(β, ρ, λy.x) = λ′
y.x êy.x,t(β, ρ), (6)

with t = qm + 2, ..., T, λm = (λ0,m, ..., λj,qm)
′, êm,t = (1, ϵ̂m,t−1, ..., ϵ̂m,t−qm)

′ and λ̂m is obtained

by regressing ϵ̂2
m,t onto êm. Hence, since γ̂ is consistent for γ, we have that ŝ2

y,t can be written

ŝ2
y,t = s2

y,t(β̂, ρ̂, γ̂, λ̂y.x, λ̂x), where

s2
y,t = s2

y,t(β, ρ, γ, λy.x, λx) = γ2s2
x,t(ρ, λx) + s2

y.x,t(β, ρ, λy.x). (7)

The above discussion suggests the following stepwise procedure to obtain ŝ2
y,t:

1. Obtain ϵ̂y,t and ϵ̂x,t by fitting (1) and (2) by LS.

2. Fit (3) by LS after replacing ϵy,t onto ϵx,t by ϵ̂y,t and ϵ̂x,t, respectively. Obtain ϵ̂y.x,t =

ϵ̂y,t − γ̂ϵ̂x,t, where γ̂ is the estimated LS slope.

3. Retrieve ŝ2
m,t as the fitted value from a regression of ϵ̂2

m,t onto êm,t.

4. Compute ŝ2
y,t = γ̂2ŝ2

x,t + ŝ2
y.x,t.

Given ŝ2
y,t the computation of the FQGLS t-statistic is very simple;

t–FQGLS =
∑T

t=qm+2 ŝ−2
y,t xd

t−1yd
t√

∑T
t=qm+2 ŝ−2

y,t (xd
t−1)

2
,

where q = max{qx, qy.x}.
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3 Assumptions

The basic DGP is given by (1)–(3), where ϵx,t, ϵx.y,t, β and ρ are assumed to satisfy Assump-

tions EPS, BET and RHO.

Assumption EPS.

(i) ϵx,t and ϵy.x,t are mutually independent with E(ϵm,t|Ft−1) = 0, E(ϵ2
m,t) = σ2

m ∈ (0, ∞),

and E(ϵ4
m,t) < ∞ for m ∈ {x, y.x};

(ii) x0 = 0.

The requirement that ϵx,t and ϵy.x,t are serially uncorrelated is restrictive, but is made

here in order to facilitate discussion and to focus on the essence of the problem, namely,

the treatment of the conditionditional heteroskedasticity. In Section 3 we consider a sub-

sample FQGLS-based tests that do not require serially uncorrelated innovations. Similarly,

as long as x0 = Op(1), the initialization does not affect the results. Hence, we can just as

well set x0 = 0. While the no serial correlation and zero initial value requirements can

be relaxed, the assumption of constant unconditional variances is crucial. If the uncondi-

tional homoskedasticity assumption is violated the properties of the FQGLS test procedure

become suspect, and in that case it is better to consider approaches that are robust to such

unconditional heteroskedasticity (see Smeekes and Taylor, 2012, and the references provided

therein). However, unconditional homoskedasticity does not rule out models of stochastic

volatility (SV). In Section 4 we elaborate on this.

Assumption BET.

β =
b
T

,

where |b| < ∞ is a constant not depending on T.

Assumption RHO.

ρ = 1 +
c
T

,

where c ∈ (−∞, 0] is a constant not depending on T.
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The local-to-zero specification in Assumption BET is very convenient, because it nests

both the null and local alternative hypotheses, as determined by the drift parameter b. If

b = 0 (β = 0), then we are under the no predictability null, whereas if b ̸= 0, then we are

under the local alternative with β → 0 as T → ∞. The main reason for considering a local

alternative of this type is that it allows us to evaluate power analytically. This is in contrast

to the conventional formulation where β ̸= 0 is assumed to be fixed, in which case we only

learn if the test is consistent and, if so, at what rate. Similarly, since the predictor can be

quite persistent, we follow, for example, Cavanagh et al. (1995), Elliott and Stock (1994), and

Lanne (2002) and assume that ρ is local-to-unity with c measuring the degree of persistency

in {xt}T
t=1. If c = 0, then {xt}T

t=1 has an exact unit root, whereas if c < 0, then {xt}T
t=1 is

“locally stationary” in the sense that ρ approaches one from below.

Assumption HET.

(i) {s2
y,t}T

t=2 is stationary and strong mixing with mixing coefficients αn = O(n−3r/(r−3))

for r > 3, n ≥ 1, E(s−2
y,t ) = ϕy ∈ (0, ∞) and E(s−4

y,t ) ∈ (0, ∞);

(ii) λ0,m > 0 and λ1,m, ..., λqm,m ≥ 0 for m ∈ {x, y.x};

(iii) qm < ∞.

Note how Assumption HET does not put any restrictions on σ2
y,t, the true conditional

variance. The FQGLS t-test is therefore widely applicable. The specification of σ2
y,t is not irrel-

evant, however, as only when s2
y,t = σ2

y,t will FQGLS be efficient (see Section 3). In this sense

(5) and (6) put restrictions on the types of conditional volatility models in which FQGLS can

be expected to be efficient. Some examples of such models are given subsequently.

Example 1. An often-used multivariate conditional heteroskedasticity model is the constant-

correlation ARCH of Bollerslev (1990). In this case,

E(ϵtϵ
′
t|Ft−1) = Σϵ,t =

[
σ2

x,t σxy,t

σxy,t σ2
y,t

]
= DΘtD′ =

[
σ2

x,t γσ2
x,t

γσ2
x,t σ2

y.x,t + γ2σ2
x,t

]
,

where ϵt = (ϵx,t, ϵy.x,t),

D =

[
1 0
γ 1

]
,
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Θt = diag(σ2
x,t, σ2

y.x,t), σ2
m,t = α0,m + ∑

pm
j=1 αj,mε2

m,t−j, εt = (εx,t, εy.x,t)′−1ϵt, α0,m > 0, and

α1,m, ..., αpm,m ≥ 0. Since εx,t = ϵx,t and εy.x,t = ϵy,t − γϵx,t = ϵy.x,t, this is identically the

structure in (5)–(7) with qm ≥ pm lags.

Example 2. The fact that the conditional variance equation is estimated using LS precludes

generalized ARCH (GARCH) terms. However, since the purpose here is just to obtain the

fitted value (and not to estimate the coefficients of the GARCH equation), the assumption

that (5) and (6) are of finite order is not a restriction, because any GARCH model can be ap-

proximated arbitrarily well by taking qm sufficiently large (see Andrews and Guggenberger,

2009, Section 7), a result that is verified in small samples in Section 4.2

Example 3. As mentioned in Section 2, while we focus on the case when (5) and (6) have

an AR structure, this is not necessary. In fact, (5) and (6) can be easily generalized to ac-

commodate, dummy variables, known (nonlinear) functions of the lags of ϵ̂2
x,t and ϵ̂2

y.x,t, as

well as other predetermined regressors. “X–ARCH” models of the type σ2
y.x,t = α0,y.x +

α1,y.xϵ2
y.x,t−1 + α2,y.xϵ2

x,t−1 (see Brenner et al., 1996) can therefore be accommodated, as can

asymmetric threshold ARCH models of the type σ2
y.x,t = α0,y.x + α1,y.xϵ2

y.x,t−11(ϵy.x,t−1 >

0) + α2,y.xϵ2
y.x,t−11(ϵy.x,t−1 ≤ 0), where 1(A) is the indicator function for the event A (see

Glosten et al., 1993).

4 Asymptotic results

In this section, we provide results for the (infeasible) quasi-GLS (QGLS) t-statistic based on

s2
y,t rather than ŝ2

y,t. We then show that this statistic is asymptotically equivalent to t–FQGLS.

However, to be able to analyze the effect of the accounting for conditional heteroskedasticity,

we start by considering the LS estimator.

Most, if not all, studies concerned with the testing of the predictability hypothesis are

based on the LS estimator β̂ of β and its t-statistic (see, for example, Stambaugh, 1999; Elliott

and Stock, 1994; Lanne, 2002; Torous et al., 2004), as given by

t–LS =
∑T

t=2 xd
t−1yd

t

σ̂y

√
∑T

t=2(xd
t−1)

2
,

2Of course, the proofs with qm → ∞ will be more complex, although the current ones can probably be
extended along the lines of Said and Dickey (1986).
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where σ̂2
y = T−1 ∑T

t=2 ϵ̂2
y,t. The asymptotic distribution of this test statistic under Assump-

tions EPS, BET and RHO is given in Proposition 1. Anticipating this, it is useful to define

U(ρxy, b/γ, c) = ρxyDF(b/γ, c) +
√

1 − ρ2
xyZ, (8)

where

DF(b/γ, c) =
b
γ

√∫ 1

0
Jd
x,c(s)2ds +

∫ 1
0 Jd

x,c(s)dWx(s)√∫ 1
0 Jd

x,c(s)2ds
, (9)

with ρxy = corr(ϵy,t, ϵx,t) = γσx/σy ∈ [−1, 1], Jd
x,c(s) = Jx,c(s) −

∫ 1
0 Jx,c(r)dr, Jx,c(s) =∫ s

0 exp((s − r)c)dWx(r) is a standard Ornstein–Uhlenbeck process, and Wx(s) is a standard

Brownian motion that is independent of Z ∼ N(0, 1).

Proposition 1. Under Assumptions EPS, BET and RHO, as T → ∞,

t–LS →w U(ρxy, b/γ, c),

where →w signifies weak convergence.

Remark 1. It is instructive to compare the asymptotic distribution of t–LS with that of the

Dickey–Fuller (DF) t-test of the hypothesis of ρ = 1 in (2), which is given by

U(1, c, c) = DF(c, c) = c

√∫ 1

0
Jd
x,c(s)2ds +

∫ 1
0 Jd

x,c(s)dWx(s)√∫ 1
0 Jd

x,c(s)2ds
.

Hence, the asymptotic distribution of t–LS can be seen as a weighted sum of N(0, 1) and a

version of the DF local distribution with b/γ taking the place of c. The weight, ρ2
xy, mea-

sures the extent of the endogeneity. At the one extreme, if ρ2
xy = 1, so that ϵy,t and ϵx,t

are perfectly correlated, then t–LS essentially becomes a unit root test of yt, and therefore

U(ρxy, b/γ, c) = DF(b/γ, c). On the other hand, if ρ2
xy = 0, so that the endogeneity is ab-

sent, then U(ρxy, b/γ, c) = Z.

Note that while dependent on ρxy, b, γ and c, the asymptotic distribution of t–LS does

not depend on σ2
y,t. Unattended conditional heteroskedasticity will therefore not interfere

with inference, at least not asymptotically. However, there might still be important power

gains to be made by accounting for the information contained in the heteroskedasticity. The

results reported in Proposition 2 for the QGLS t-statistic enables analysis of this issue. Here

ρxu = corr(ϵx,t, ut), where ut = s−2
y,t ϵy,t.

9



Proposition 2. Under Assumptions EPS, BET, RHO and HET, as T → ∞,

t–QGLS →w U(ρxu, b/γ, c).

From ρxy = γσx/σy we obtain

∂U(ρxy, b/γ, c)
∂b

=
ρxy

γ

√∫ 1

0
Jd
x,c(s)2ds =

σx

σy

√∫ 1

0
Jd
x,c(s)2ds > 0,

suggesting that the power of t–LS is increasing in b, which is also true for t–QGLS. In fact, it

is not difficult to show that

∂U(ρxu, b/γ, c)/∂b
∂U(ρxy, b, c, γ)/∂b

=
ρxu

ρxy
= σy

√
ϕy, (10)

which can be both larger and smaller than one. The relative power of t–LS and t–QGLS is

therefore generally indetermine. One exception is when s2
y,t = σ2

y,t, such that QGLS is also

(true) GLS. In this case, we have that by the Jensen inequality, ϕy = E(s−2
y,t ) = E(σ−2

y,t ) ≥ σ−2
y

with equality only if there is no heteroskedasticity. It follows that σy
√

ϕy ≥ 1, suggesting

that t–QGLS should be more powerful than t–LS, which is in agreement with the results of

Seo (1999), who considers a maximum likelihood-based unit root test with GARCH. We also

see that the power gain is in creasing in the extent of the heteroskedasticity, as measured by

ϕy/σ2
y , and that power is equalized when σ2

y,t = σ2
y (ρxu = ρxy).

Remark 2. As Campbell and Yogo (2006) show, the bias-corrected t-test of Lewellen (2004),

t–LEW henceforth, is asymptotically uniformly most powerful when c = 0 (and the innova-

tions are conditionally homoskedastic). In view of this, the question naturally arises if the

power of this test, which is based on LS, can be increased even further by accounting for the

conditional heteroskedasticity? Interestingly, there is an asymptotically equivalent version

of t–LEW that arises naturally in our framework if one takes as the objective to eliminate ρxy

from the asymptotic distribution of t–LS. The probably most obvious way to accomplish this

is to make (1) conditional on ϵx,t, leading to the following augmented test regression:

yt = θ − γµ(1 − ρ) + β∗xt−1 + γ∆xt + ϵy.x,t,

where β∗ = β − γ(ρ − 1). t–LEW is asymptotically equivalent to the LS t-statistic for testing

β∗ = 0 in the above regression.3 As Campbell and Yogo (2006, Appendix B) show, the

3Specifically, t–LEW is the t-statistic based on β̂∗ = β̂ − γ̂(ρ0 − 1), where ρ0 = 0.9999.
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asymptotic distribution of this test statistic is given by

U∗(ρxy, b/γ, c) =
ρxy√

1 − ρ2
xy

(b − γc)
γ

√∫ 1

0
Jd
x,c(s)2ds + Z.

The corresponding augmented QGLS t-statistic uses σ−2
y.x,t as weight and has the following

asymptotic distribution: U∗(ρxy, b/γ, cρy.xv), where ρy.xv = corr(ϵy.x,t, vt) = 1/
√

ϕy.xσy.x,

vt = σ−2
y.x,tϵy.x,t and ϕy.x = E(σ−2

y.x,t) (a formal proof is available upon request). It follows that

∂U∗(ρxy, b/γ, cρy.xv)/∂b
∂U∗(ρxy, b/γ, c)/∂b

=
1

ρy.xv
=
√

ϕy.xσy.x ≥ 1,

with equality only if σ2
y.x,t = σ2

y.x. Hence, again QGLS leads to more powerful tests than LS.

It is also not difficult to show that this QGLS test should be more powerful than t–QGLS

(without augmentation). Unfortunately, while augmentation leads to more power, it also

leads to tests that are relatively sensitive to variations in c and γ. Indeed, since c and γ enter

U∗(ρxy, b/γ, c) and U∗(ρxy, b/γ, cρy.xu) in very much the same ways as b, in practice what

could be taken for power could just as well be a reflection of size distortion. Because this in

the present paper we do not consider augmentation.

Remark 3. The results reported in Remark 2 above are important not only for the tests

developed in this study, but also for what they imply for t–LEW and other testst that are

similar in construction, such as those of Campbell and Yogo (2006). In particular, not only is

the size of these tests expected to be very sensitive to variations in c and γ, but power is also

expected to be highly dependent on these parameters. This is easily appreciated by looking

at U∗(ρxy, b/γ, c); if γ is “large” and/or b ≈ γc, then power is expected to be low.

In Proposition 3, we show that the FQGLS t-statistic not only has the same asymptotic

distribution as its infeasible QGLS counterpart, but that they are in fact asymptotically equiv-

alent.

Proposition 3. Under the conditions of Proposition 2,

|t–FQGLS − t–QGLS| = op(1).

Remark 4. In Proof of Proposition 3 we show that |ŝ2
y,t − s2

y,t| = op(1). This means that

in absence of heteroskedadticity (such that σ2
y,t = σ2

y ) t–LS and t–FQGLS have the same

asymptotic distribution. The asymptotic “price” of accounting for ARCH is therefore zero.
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Remark 5. The simulation of critical values for use with t–FQGLS is complicated by the de-

pendence of U(ρxu, b/γ, c) on c and ρ2
xu (γ is not present under the no predictability null).

However, if we assume that c = 0, then it is possible to simulate critical values for a few

equally spaced values of ρ2
xu. This approach is used by Hansen (1995a), who tabulates crit-

ical values for his unit root t-test with regressors for ρ2
xu from 0.1 to one in steps of 0.1.

Interestingly, since the distribution of this test is the same as the one given in Proposition

1, the appropriate 5% critical values for use with tFGLS when testing β = 0 versus the one-

sided alternative that β < 0 can be taken directly from Hansen (1995a, Table 1).4 In order to

determine the specific critical value to use we need an estimator of ρxu. In this paper we use

ρ̂xu = σ̂xu/σ̂xσ̂u, where σ̂2
x = T−1 ∑T

t=2 ϵ̂2
x,t, σ̂2

u = T−1 ∑T
t=q+2 û2

t and ût = ŝ−2
y,t ϵ̂y,t.

5 Subsampling

The main problem with t–FQGLS is that the asymptotic critical values are invalid if c ̸= 0.

The single most popular approach to accommodate violations of this type is to use a two-step

procedure in which the predictor is pretested for a unit root, and where the predictability test

is implemented conditional on the outcome of the pretest. Unfortunately, this means loosing

control of the overall significance level of the joint test. Therefore, in order to at least put an

upper limit on the joint significance level, Campbell and Yogo (2006), Cavanagh et al. (1995),

Lewellen (2004), and Torous et al. (2004), among others, have made use of the Bonferroni

principle, which states that the significance level for the joint hypothesis that at least one of

the tests end up in a rejection is less than or equal to the sum of the individual significance

levels. Hence, if the individual unit root and predictability tests are performed at the 5%

level, then their joint significance level cannot be larger than 10%.

The advantage of the Bonferroni principle is that it is applicable even if the test statistics

are correlated. The main drawback is that the upper limit it provides is a very crude one,

and that the test is bound to be conservative. As a response to this, in the present section we

consider the subsampling approach, which uses subsamples of length n < T to obtain the

empirical distribution function of t–FQGLS. Andrews and Guggenberger (2009a) develop a

general subsample theory that applies to a broad class of non-regular models in which most

4The corresponding critical values for a two-sided equal-tailed test can be obtained upon request. These are
obtained via simulation. In particular, given the asymptotic results reported in Section 2.1, critical values for the
case when c = 0 can be obtained using simulated random walks of length T = 1, 000 in place of Wx(r).
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other methods fail. As an example, they consider an AR model that is of the same form as

(2) where {ϵx,t}T
t=1 is conditionally heteroskedastic and ρ is local-to-unity (see Andrews and

Guggenberger, 2009a, Section 7; 2009b, Section S10). The test statistic that they consider is

the FQGLS t-statistic of ρ that employs ŝ2
x,t as an estimator of σ2

x,t. The form of the test statistic

is therefore the same as that of t–FQGLS.5 The authors prove that the resulting symmetric

two-sided subsampling and equal-tailed two-sided hybrid-subsampling confidence inter-

vals have correct asymptotic size. This is true even if c ̸= 0, which makes the subsampling

approach very appealing also in the present context.

To formally describe the subsampling approach, it is convenient to denote by ts–FQGLS

the FGLS statistic when applied to subsample s = 1, ..., T − n + 1 covering the n observation

pairs {(ys, xs), ..., (ys+n−1, xs+n−1)}. For a nominal α-level two-sided symmetric test, the sub-

sample critical value is given by qT,n(1− α), the (1− α)-quantile of the empirical distribution

of {|ts–FQGLS|}T−n+1
s=1 . The corresponding upper and lower subsample critical values for a

two-sided equal-tailed test are given by q∗T,n(1 − α/2) and q∗T,n(α/2), respectively, where

q∗T,n(α) is the α-quantile of the empirical distribution of {ts–FQGLS}T−n+1
s=1 . Define the hy-

brid upper and lower subsample critical values as q∗∗T,n(α/2) = min{q∗T,n(α/2), q∗(α/2)} and

q∗∗T,n(1− α/2) = max{q∗T,n(1− α/2), q∗(1− α/2)}, respectively, where q∗(α) is the α-quantile

of the asymptotic distribution of t–FQGLS under the null hypothesis, U(ρxu, 0, c).

Proposition 4. Under the conditions of Proposition 2, as n, T → ∞ with n/T → 0,

P(|t–FQGLS| ≤ qT,n(1 − α)|H0) → 1 − α,

P(q∗∗T,n(α/2) ≤ t–FQGLS ≤ q∗∗T,n(1 − α/2)|H0) → 1 − α.

Remark 6. As far as we, the two-sided symmetric and hybrid equal-tailed FQGLS t-tests

are the only predictability tests that have correct asymptotic size when c ̸= 0. In fact, as

Andrews and Guggenberger (2009a) show, subsampling is valid even if {(ϵx.t, ϵy.x,t)}T
t=1 is

stationary and strong mixing (but not necessarily serially uncorrelated). Hence, while the

proof makes use of Assumption EPS, this can probably be relaxed to allow for serially corre-

lated disturbances.
5The main difference is that while we employ the conventional FQGLS standard error estimator, they employ

a sandwich-type heteroskedasticity-consistent (HC) standard error estimator. However, the HC standard errors
are only needed in the case when c = ∞, which is ruled out by Assumption RHO.
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6 Monte Carlo simulations

6.1 DGP

Two experiments, denoted E1 and E2, are considered. In E1 we investigate the performance

of the FQGLS tests when the conditional variance is generated as in Example 1 of Section 2,

which means that the fitted conditional variance model nests the true model, suggesting that

FQGLS should be asymptotically efficient. The purpose of E2 is to evaluate the performance

when the true model is not nested in this way.

The DGP used in E1 is given by a restricted version of (1) and (2) where the conditional

variance generated as described in Example 1 of Section 2. The restrictions are θ = 1, µ = 0,

qx = qy.x = 1, α0,y.x = α0,x = α0, α1,y.x = α1,x = α1, α0 = 1 − α1 (to ensure that σ2
y.x = σ2

x = 1)

and εt ∼ N(0, Θt). By setting α1 and γ, we can control the values taken by ρxy and ρxu. Note

first that by the definition of ρxy, since σ2
y.x = σ2

x = 1, we have σ2
y = 1 + γ2 and therefore

ρxy = γ/
√

γ2 + 1. There is no such explicit formula for ρxu. However, since σx = 1, we

know that ρxu = γ
√

ϕy, suggesting an inverse relationship with α1. Also, by setting c we

can control the persistency of {xt}T
t=1.

The DGP used in E2 is again given by (1) and (2) where θ = 1 and µ = 0, but now we

fix c = −20 and γ = −0.5, which allows us to focus on σ2
y.x,t and σ2

xt. In particular, while the

latter variance is as in E1, for the former four specifications are considered.

• GARCH: σ2
y.x,t = 1 + 0.4ε2

y.x,t−1 + 0.4σ2
y.x,t−1.

• X–ARCH: σ2
y.x,t = 1 + 0.4ε2

y.x,t−1 + 0.4ε2
x,t−1.

• Asymmetric threshold ARCH: σ2
y.x,t = 1 + 0.2ε2

y.x,t−11(εy.x,t−1 > 0)

+ 0.6ε2
y.x,t−11(εy.x,t−1 ≤ 0).

• AR–SV: ln(σ2
y.x,t) = 1 + 0.4 ln(σ2

y.x,t−1) + ηt, where ηt ∼ N(0, 1).

All results are based on 3, 000 replications of samples of size T ∈ {50, 100, 200}. The

reason for considering only relatively small values of T is to demonstrate how the subsample

FGLS test does not require T very large to work properly. In fact, according to the results,

T = 50 is enough. However, we also considered some relatively large sample sizes, the

results of which are described in Section 6.4.
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6.2 Implementation issues

In interest of comparison, in addition to symmetric and hybrid subsample FQGLS, t–LS and

t–LEW are also simulated.6 Thus, all-in-all we have four tests.

As for FGLS, even if GARCH, X–ARCH and asymmetric threshold ARCH models are

actually estimable in our approach (see Examples 2 and 3 in Section 3), the implementation is

done under the ARCH specification in (5) and (6), which is correct in E1 but not in E2. Hence,

in E2 we study the performance of FQGLS when the conditional variance is misspecified. In

both experiments, we need to determine the appropriate ARCH orders, qx and qy.x. We

experimented with several rules, but opted for the Schwarz Bayesian information criterion

(BIC); see Section 6.4 for a discussion of the performance under some of the other rules.

The maximum number of lags is set to ⌊4(T/100)2/9⌋, where ⌊x⌋ denoted the integer part

of x (Ng and Perron, 1995). The subsample critical values are based on the full sample lag

estimates, although σ2
y.x,t and σ2

xt are reestimated for each subsample.7

As for the subsample length, n, from a theoretical point of view any choice satisfying

n → ∞ with n/T → 0 as T → ∞ will do. Applying the procedure in practice, however,

one has to be more careful. Choosing n “too small” may lead to a bad approximation of

the actual distribution, because if the sample is small enough t–FQGLS may not be well-

behaved. On the other hand, choosing n too close to T will lead to very little variation

in {ts–FQGLS}T−n+1
s=1 , and therefore an underestimation of the true dispersion of t–FQGLS.

Because of these concerns, we follow Romano and Wolf (2001, Algorithm 5.1) and pick n by

minimizing the variance of the critical values. The algorithm proceeds as follows:

1. For each n ∈ [nmin, nmax] compute a the subsample critical values. Romano and Wolf

(2001) recommend setting nmin = rmin
√

T and nmax = rmax
√

T with rmin ∈ [0.5, 1] and

rmax ∈ [2, 3]. We set rmin = 1 and rmax = 2.

2. For each n, compute S(n) as the standard deviation of the subsample critical values

obtained in [n − k, n + k], where k > 0. Following Romano and Wolf (2001), we set
6Results were obtained also for the asymptotic and Bonferroni t-tests, Bonferroni Q-test and sup-bound Q-

test of Campbell and Yogo (2006). However, in terms of size accuracy these were dominated by the other tests.
Therefore, in order to keep our tables uncluttered, we do not report the results of the Campbell and Yogo (2006)
tests, which can be made available upon request. Also available upon request are the results for asymptotic
FQGLS.

7The full-sample estimators of σ2
y.x,t and σ2

xt can also be used. The justification for this is that FQGLS is
asymptotically equivalent in the full sample and in subsamples. However, unreported results suggest that the
test based on the subsample estimator works best.

15



k = 2.

3. Set n̂ = arg minn∈[nmin,nmax ] S(n).

It is important in practice that the estimated variance is bounded away from zero. One

way to ensure this is to follow Hansen (1995b) and to use a trimmed estimator such as

max{κσ̂2
y , σ̂2

y,t}, where κ ∈ [0, 1]. He sets κ = 0.1, which is an arbitrary choice. A better

approach that is asymptotically justifiable involves setting κ ∼ T−η with η > 0, which, to-

gether with the consistency of σ̂2
y,t (see Appendix), implies that P(σ̂2

y,t < κσ2
y ) → 0 as T → ∞.

Hence, under these conditions, truncation is asymptotically irrelevant. In the simulations,

we set κ = T−1/2, although in the robustness trials we ran the results for κ = 0, 0.1 were

almost identical (see Section 6.4).

All tests are double-sided. Therefore, since critical values reported by Hansen (1995a) are

for a one-sided test, the asymptotic critical values for use with t–LS and hybrid subsample

FQGLS had to be obtained via simulation (see Remark 5). t-LEW has a N(0, 1) distribution.

The appropriate 5% level critical value is therefore given by 1.96.

6.3 Results

We begin by considering the results from E1, which are reported in Table 1. Because of space

constraints, we focus on the size and size-adjusted power of a nominal 5% level test.8 The

information content of this table may be summarized as follows:

• With b = c = γ = 0, all four tests perform quite similarly with size being close to

the nominal 5% level, which is just as expected. However, we also see that whenever

c, γ ̸= 0, t–LS and t–LEW have difficulties. The latter test is particularly distorted,

which is partly expected given Remark 3. By contrast, the subsample FQGLS tests

seem to perform well with only minor size distortions.

• The power of the tests is rather stable across the three values of T considered, which is

to be expected given the local specification of β. Thus, as alluded to in Section 3, while

a fixed value β ̸= 0 would cause power to increase with T, since now β → 0 as T → ∞,

power should be flat in T.

8Some results on the estimated lag lengths and root mean squared error of the different estimators are avail-
able upon request.
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• If, on the one hand, c = γ = 0, then all tests tend to perform very similarly in terms of

power. The subsample tests generally perform best; however, the difference in power

is very small. The results for c, γ ̸= 0 are, on the other hand, quite different with the

power of the subsample FQGLS tests being well above that of the other tests. In fact,

the subsample FQGLS tests are uniformly more powerful than the other tests.

• The fact that power is decreasing in both |γ| and |c| is in accordance with our theoret-

ical results (see Section 4), and so is the relative sensitivity of t–LEW (see Remark 3).

In fact, based on the results reported here, given its apparent inability to discriminate

between the null and alternative hypotheses, t–LEW should not be used unless c and

γ are known to be zero.

• The overall best power is obtained by using the symmetric subsample FQGLS test,

which is in agreement with the Monte Carlo results reported by Andrews and Guggen-

berger (2009a, Table II) for their subsample FQGLS unit root tests.

Consider next the results reported in Table 2 for E2. These can be summarized as follows.

• Given their insensitivity to a misspecification of the conditional heteroskedasticity, the

fact that the size of the subsample FQGLS tests is not affected by the variance model is

well expected.

• While power vary quite substantially across variance models, it does so for all tests.

The relative ranking of the tests is therefore the same as in Table 1 with the subsample

FQGLS tests leading to highest power. The poorest performance is again obtained by

using t–LEW, which has no power beyond size.

In sum, the results reported in this section suggests that the subsample FQGLS tests have

good size accuracy and high power relative to other tests. This is true regardless of whether

the conditional variance is correctly specified or not. The new tests should therefore be a

valuable addition to the already existing menu of predictability tests.

6.4 Robustness

The robustness of the above results was assessed along several dimensions.
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• As usual, the choice of lag orders in (5) and (6) should be done with care, as test results

can be quite sensitive to different lag lengths. Specifically, while underspecification can

lead to size distortions, overspecification will lead to a loss of power. Although this is

of course a general concern, it is particularly relevant in the current context, as there is

not just one choice that has to be made but two (qx and qy.x). Interestingly, the results

were very robust across the various rules considered. For example, the results based on

the Akaike information criterion (AIC) were almost identical to the results based on the

BIC. The same was true when considering a general-to-specific test rule based on the

t-statistic of the last ordered lag. Hence, when choosing among the “usual suspects”,

the choice of lag length selection rule does not seem to be that important after all.

• The subsample FQGLS tests are centered by the true parameter value under the null

hypothesis, which is typically referred to as “uncentered” subsampling. There is also

“centered” subsampling, in which case the test statistic is centered by the full-sample

estimate of that parameter. Unreported results show that centering (by the full-sample

estimate) causes the subsample FQGLS tests to become oversized, which is partly ex-

pected given the results of McMurry et al. (2013, Theorem 3.5), showing that centered

rather than uncentered subsampling leads to relatively more rejections.

• The above results are based on setting κ (in the trimming of ŝ2
y,t) to T−1/2. We carried

out the same simulations for κ = 0, 0.1, and obtained very similar results. This is be-

cause the trimming almost never took effect. However, we still recommend trimming,

as a single variance estimate close to zero is enough cause misleading inference. We

also ran some simulations based on trimming λ̂x and λ̂y.x rather than ŝ2
y,t, an idea that

was motivated by the work of Francq and Zakoı̈an (2008). However, trimming ŝ2
y,t

almost always led to better performance.

• In the empirical part T > 1, 500. Therefore, in order to test the robustness of our

findings with respect to sample size, we did some trial runs with T = 1, 500. The results

from these runs were very similar to the ones for T = 200, which is partly expected

given how little variation there is between T = 50 and T = 200. Note especially how

the subsample FGLS tests seem to have good size accuracy already when T = 50.

Hence, T does not have to be very large for the asymptotic approximation to provide

a reasonable description of actual test behavior.
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7 Empirical illustration

The return predictability literature can be divided into two strands depending on the type

of predictor used; while the first uses various financial ratios (see, for example, Westerlund

and Narayan, 2012; Rapach et al., 2010; Welch and Goyal, 2008; Campbell and Thompson,

2008; Campbell and Yogo, 2006; Lewellen, 2004), the second uses macroeconomic variables

(see, for example, Rapach et al., 2005; Narayan and Sharma, 2011; Diesprong et al., 2008).

While obviously similar in aim, the two strands have met with varying interest. The fi-

nancial ratios have been the most popular by far and therefore this strand has accumulated

a rich volume of studies, giving it both depth and scope, even from an econometric point

of view. In particular, the importance of accounting for the persistency, endogeneity, and to

some extent also the heteroskedasticity of the data is well-known (see, for example, Camp-

bell and Yogo, 2006; Lewellen, 2004; Westerlund and Narayan, 2012b). Unfortunately, the

same cannot be said about studies that use macroeconomic predictors. In fact, unlike the

financial ratios, which are generally believed to be able to predict returns, there is still lack

of consensus as to the predictive content of macroeconomic variables. As a way of “compen-

sating” for this lack of consensus, in the present paper we investigate the predictive ability

of the oil price and the exchange rate, two of the most common macroeconomic predictors.

However, we do not ignore financial ratios. One of the implications of the results of Section

4–6 is that the existing evidence that financial ratios predict returns based on the tests of

Lewellen (2004), and Campbell and Yogo (2006) may well be due to size distortions. Hence,

there is a need to reconsider the empirical evidence based on financial ratios.

7.1 Data

We have two data sets. The first data set is at a weekly frequency and contains returns of

the S&P500 index, the US dollar-British pound exchange rate (ER), and the oil price (OIL),

as proxied by the US crude oil measured in dollars per barrel. The span of the sample was

dictated by the availability of data for the predictors. The exchange rate data series is longest

and spans the 01/01/1971–5/25/2012 period, culminating into no less than 2,161 weekly

observations. The oil price data cover the 5/13/1983–5/25/2012 period, and comprise 1,516

observations. All data are obtained from BLOOMBERG.

Our second data set is obtained from Amit Goyal’s web page and is the same as in Goyal
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and Welch (2008). The published data set ends in 2006, and has since then been updated to

include two more years. A complete description of the data is provided in Goyal and Welch

(2008), and in an appendix available from Goyal’s web page. The data set consists of monthly

returns on the S&P500 index and 12 predictor variables including book-to-market (BM) ratio,

long-term bond yield (LTY), earnings-price ratio (EP), long-term bond return (LTR), inflation

(INFL), stock variance (SVAR), net equity expansion (NTIS), term spread (TMS), corporate

bond rate (CORPR), default yield spread (DFY), default return spread (DFR), and dividend-

price ratio (DP). The sample period for the variable varies depending on data availability,

and is given in Table 3.

7.2 Descriptive statistics

We begin by looking at Table 3, which reports some commonly used descriptive statistics.

We pay particular attention to the extent of persistency and heteroskedasticity. However,

before we do this we discuss briefly the reported sample moments. We begin by considering

the macroeconomic predictors. OIL is at least five times as volatile as ER. Both predictors are

skewed; OIL is right-skewed, and ER left-skewed. Moreover, while ER is roughly mesokur-

tic, OIL is leptokurtic with relatively thin tails. The macroeconomic predictors therefore

behave quite differently, which is suggestive of differing predictive abilities. As for the fi-

nancial ratios, we see that DP is most volatile, followed by LTR and CORPR. We also see that

most financial ratios tend to be skewed and the kurtosis measure is larger than three for all

predictors, which is suggestive of fat tails.

We now turn to the persistency and heteroskedasticity of the data, which have more

direct implications for the FQGLS tests. We begin with heteroskedasticity. As a first step we

filtered each of the variables using an AR model (of order six). A Lagrange multiplier test for

the null hypothesis of no ARCH is then applied to the resulting filtered series. The results

reported in Table 3 suggest that the no ARCH null can be rejected at the 1% significance level

for all variables.

The finding that all variables seem to exhibit ARCH is in itself of course nothing new,

but is actually a rather expected result. However, it highlights an often ignored source of in-

formation in studies of return predictability. There are studies that recognize the presence of

heteroskedasticity, although typically little or nothing is done about it. To give one example,

in their study of the predictability of the equity premium Welch and Goyal (2008, page 1474)
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state that “There are other diagnostics (heteroskedasticity, residual autocorrelation, etc.) that

stable models should pass but we do not explore them in our article.” Other studies, such

as Kothari and Shanken (1997), and Ferson et al. (2003), use robust standard errors, which

means that although the heteroskedasticity is not ignored, the information it contains is. The

return predictability literature generally suffers from these same issues.

Next, we attempt to ascertain the order of integration of the variables. The ADF test

results reported in Table 3 suggest that the null hypothesis of a unit root has to be rejected

at the 10% level for all variables but returns (in both samples), BM and LTY. We therefore

conclude that there is evidence of stationarity not only for returns but also for a majority of

the predictors. However, in many cases the estimated AR coefficient is still very close to one,

suggesting that while statistically different from one, the actual difference is not very large.

Most of the predictors therefore exhibit unit root-like behavior, which leads us to conclude

that Assumption RHO is appropriate.9 Another implication of this result is that both t–LS

and t-LEW are likely to be size distorted, and that the subsample FQGLS tests are more

reliable. In the next section we therefore only consider these tests.

7.3 Predictability test results

Having considered briefly the properties of each variable in our two samples, we now turn

to the FQGLS test results. But before we come to the actual test results, in Table 4 we take

a look at some regression diagnostics that are obtained as a by-product when implementing

the FQGLS tests. In particular, we report the results from a Wald test of the null of no ARCH

effect in (5) and (6). Corroborating the previously reported evidence of ARCH, we see that

the null of no ARCH is rejected in both models for all variables. The only exception is for (5)

in case of OIL.

In addition to the ARCH test results, Table 4 also reports the results of the LS estimator

γ̂ of γ in (3). If the predictors are exogenous, γ = 0, whereas is they are endogenous, γ ̸= 0.

The results show that γ̂ is significantly different from zero for all but three predictors, INFL,

NTIS and TMS. The fact that INFL turns up insignificant is in agreement with the results of

Valkanov (2003). BM, EP and DP are among the predictors where a relatively high value of

γ̂ is observed. Coincidentally, these are also the predictors that have received most attention

9This finding regarding financial ratio predictors seems largely in agreement with studies such as Pontiff and
Schall (1998), Lewellen (2004), Campbell and Yogo (2006), and Stambaugh (1999), in which the predictors are
found to be highly persistent.
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in the literature.10

The results from the predictability tests are presented in Table 5. In particular, we focus

on a 95% confidence interval for β using the subsample FQGLS tests. We begin by looking

at the macroeconomic predictors. The confidence intervals for OIL include the value zero,

which means that there is no evidence against the no predictability null. By contrast, for

ER the confidence intervals lie to the left of zero, suggesting that the no predictability null

should be rejected. The results for the financial ratios are mixed too. Over the full sample

period, we count five rejections, for EP, SVAR, NTIS, DFY and DP. One of the most popular

predictors of returns, BM, shows limited evidence of predictability. The post-war data are

slightly more supportive of predictability. In this case, we find evidence of predictability for

seven predictors, including BM.

How do the above results compare to those reported in the extant literature? The cross-

sectional return predictability literature celebrates BM as a very successful predictor. We

fail to find strong support that BM predicts returns. In addition, from the work of Lewellen

(2004) we learn that EP is a weak predictor of returns. This is in sharp contrast to our results;

we find that EP strongly predicts returns. Similarly, while Hjalmarsson (2010) do not find

any evidence that EP and DP predict returns, according to our findings both variables are in

fact able to predict returns. Hence, different tests lead to different conclusions, suggesting

that the choice of test is key when trying to assess the reliability of the evidence on the

predictability hypothesis.

As already explained, the choice of which test to use is dictated primarily by the extent

of predictor persistency and endogeneity. We show that our samples, comprising not only a

large number of financial ratios but also two of the most popular macroeconomic predictors,

are characterized by both features. This means that existing tests, such as t-LS and t–LEW

are likely to be misleading, and that subsample FQGLS is more reliable. We also show that

accounting for heteroskedasticity is important for power, and this feature is present in both

samples. The main implication of these findings, one that can simply be drawn from the

descriptive statistics, is that subsample FQGLS should be most suitable.

10The preference for these predictors is mainly due to their importance for financial models of risk and return
(see Campbell and Shiller, 1988; Cochrane, 1991).

22



8 Concluding remarks

The literature on return predictability has evolved considerably over the last 20 years. While

initial tests produced strong evidence of predictability, subsequent research has shown that

much of this evidence is in fact due to bias caused by inappropriate assumptions regarding

the predictors. For example, while initially thought to be stationary, many popular predic-

tors have since then been shown to be highly persistent and often one cannot reject the notion

that they are in fact unit root non-stationary. It is therefore natural to model these predictors

as having a root near unity. Similarly, while the predictors were initially modeled as being

exogenous, often this is not what one finds in practice.

Recent studies have therefore moved away from the assumption of an exogenous station-

ary predictor and towards more realistic models of endogeneity and near unit roots. How-

ever, while certainly more general when it comes to the allowable predictors, these studies

ignore the fact that returns are typically characterized by conditional heteroskedasticity. In

the current study we show, both analytically and numerically, that this practice can be rather

costly, and that the inclusion of the extraneous information contained in the heteroskedas-

ticity can lead to substantial gains in performance, not only in terms of power but also in

terms of size accuracy when combined with subsample critical values. This is verified in

small samples using both simulated and real data.
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Appendix: Proofs

Proof of Proposition 1.

The proof of Proposition 1 is a direct consequence of the results of Elliott and Stock (1994,

Section 2.2). Details are therefore omitted. �

Lemma A.1. Under Assumption EPS and HET, as T → ∞,

1√
T

⌊sT⌋

∑
n=1

 ϵx,n

ϵy,n

un

→w

 Bx(s)
By(s)
Bu(s)

 ,

where

Bx(s) = σxWx(s),

By(s) = σyρxyWx(s) + σy(1 − ρ2
xy)

1/2Wy(s),

Bu(s) =
√

ϕy

[
1 − ρ2

xu
1 − ρ2

xy

(
1 −

ρ2
xy

ρ2
xu

)]1/2

Wu(s) +
√

ϕyρxuWx(s)

+
√

ϕy
ρxy(1 − ρ2

xu)

ρxu(1 − ρ2
xy)

1/2 Wy(s),

with ut = s−2
y,t ϵy,t, and Wu(s), Wy(s) and Wx(s) being independent Brownian motions.

Proof of Lemma A.1.

By Lemma 5 (e) in Andrews and Guggenberger (2012),

1√
T

⌊sT⌋

∑
n=1

 ϵx,n

ϵy,n

un

→w

 Bx(s)
By(s)
Bu(s)

 = Σ1/2

 Wx(s)
Wy(s)
Wu(s)

 = Σ1/2

[
Wϵ(s)
Wu(s)

]
, (A1)

as T → ∞, where Wu(s), Wy(s) and Wx(s) are three Brownian motions that are independent

of each other, Wϵ(s) = [Wx(s), Wy(s)]′ and

Σ =


σ2

x σxy σxu

σxy σ2
y σyu

σxu σyu σ2
u

 =

 Σϵ Σϵu

Σ′
ϵu σ2

u

 ,
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with an obvious definition of Σϵ and Σϵu. As for the elements of Σ, by the law of iterated

expectations,

σxy = E(ϵx,tϵy,t) = E[ϵx,t(γϵx,t + ϵy.x,t)] = γE(ϵ2
x,t) = γσ2

x , (A2)

σ2
u = E(u2

t ) = E(s−4
y,t ϵ2

y,t) = E[s−4
y,t E(ϵ2

y,t|Ft−1)] = E(s−2
y,t ) = ϕy, (A3)

σyu = E(ϵy,tut) = E(s−2
y,t ϵ2

y,t) = E[s−2
y,t E(ϵ2

y,t|Ft−1)] = 1, (A4)

σxu = E(ϵx,tut) = E(s−2
y,t ϵy,tϵx,t) = E[s−2

y,t E(ϵy,tϵx,t|Ft−1)]

= E[s−2
y,t E((γϵx,t + ϵy.x,t)ϵx,t|Ft−1)] = γE[s−2

y,t E(ϵ2
x,t|Ft−1)] = γσ2

x ϕy. (A5)

Write Σ = Σ1/2(Σ1/2)′. The Cholesky decomposition of Σ1/2 is given by

Σ1/2 =

 Σ1/2
ϵ 0

Σ′
ϵu(Σ−1/2

ϵ )′ σu.ϵ

 , (A6)

where σ2
u.ϵ = σ2

u − Σ′
ϵuΣ−1

ϵ Σϵu, suggesting Bx(s)
By(s)
Bu(s)

 =

 Σ1/2
ϵ 0

Σ′
ϵu(Σ−1/2

ϵ )′ σu.ϵ

 [ Wϵ(s)
Wu(s)

]

=

 Σ1/2
ϵ Wϵ(s)

σu.ϵWu(s) + Σ′
ϵu(Σ−1/2

ϵ )′Wϵ(s)

 . (A7)

By using Σϵu = (σxu, 1)′ = (γϕyσ2
x , 1)′ and

Σ−1
ϵ =

 σ2
x σxy

σxy σ2
y


−1

=

 σ2
x γσ2

x
γσ2

x σ2
y


−1

=
1

σ2
x(σ

2
y − γ2σ2

x)

 σ2
y −γσ2

x

−γσ2
x σ2

x


we obtain

σ2
u.ϵ = σ2

u − Σ′
ϵuΣ−1

ϵ Σϵu

= ϕy −
1

σ2
y − γ2σ2

x

(
ρ2

xu
ρ2

xy
− 1

)
(ρ2

xu − 1)

= ϕy

[
1 −

ρ2
xy

ρ2
xu(1 − ρ2

xy)

(
ρ2

xu
ρ2

xy
− 1

)
(ρ2

xu − 1)

]
= ϕy

1 − ρ2
xu

1 − ρ2
xy

(
1 −

ρ2
xy

ρ2
xu

)
, (A8)

where ρxu = σxu/σuσx = γ
√

ϕyσx and ρxy = σxy/σxσy = γσx/σy.

Let us now consider Σ1/2
ϵ . By another use of the Cholesky decomposition,

Σ1/2
ϵ =

 σx 0
γσx σy.x

 =

 σx 0
σyρxy σy(1 − ρ2

xy)
1/2

 , (A9)
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where σ2
y.x = σ2

y − γ2σ2
x = σ2

y (1 − ρ2
xy), suggesting

Σ1/2
ϵ Wϵ(s) =

 σxWx(s)
σyρxyWx(s) + σy(1 − ρ2

xy)
1/2Wy(s)

 , (A10)

and

Σ′
ϵu(Σ

−1/2
ϵ )′Wϵ(s) = γϕyσxWx(s) +

(1 − ρ2
xu)

σy.x
Wy(s)

=
√

ϕyρxuWx(s) +
√

ϕy
ρxy(1 − ρ2

xu)

ρxu(1 − ρ2
xy)

1/2 Wy(s). (A11)

Direct substitution now yields

Bx(s) = σxWx(s),

By(s) = σyρxyWx(s) + σy(1 − ρ2
xy)

1/2Wy(s),

Bu(s) =
√

ϕy

[
1 − ρ2

xu
1 − ρ2

xy

(
1 −

ρ2
xy

ρ2
xu

)]1/2

Wu(s) +
√

ϕyρxuWx(s)

+
√

ϕy
ρxy(1 − ρ2

xu)

ρxu(1 − ρ2
xy)

1/2 Wy(s),

as was to be shown. �

Proof of Proposition 1.

t–QGLS can be expanded as

t–QGLS =
∑T

t=2 s−2
y,t xd

t−1yt√
∑T

t=2 s−2
y,t (xd

t−1)
2

= Tβ

(
T−2

T

∑
t=2

s−2
y,t (xd

t−1)
2

)1/2

+
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t=2 s−2
y,t xd

t−1ϵd
y,t√
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t=2 s−2

y,t (xd
t−1)

2
. (A12)

By Lemma 4 (c) Andrews and Guggenberger (2012), T−3/2 ∑T
t=2(s

−2
y,t − ϕy)xd

t−1 = Op(1).

By using this and then taking deviations from means,

1
T3/2

T
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s−2
y,t xd

t−1 = ϕy
1
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By use of ρ = exp(T−1c/T) = 1 + T−1c + o(1), we obtain

T−1/2xt =
1√
T
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∑
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which in turn implies
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1
T

T

∑
t=2

s−2
y,t xd

t−1ϵy,t =
1
T

T

∑
t=2

xd
t−1ut →w σx

∫ 1

0
Jd
x,c(s)dBu(s),

where Jd
x,c(r) = Jx,c(r)−

∫ 1
0 Jx,c(s)ds (see also Andrews and Guggenberger, 2012, Lemma 5

(g)). This implies
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By Lemma 4 (c) of Andrews and Guggenberger (2012), T−3/2 ∑T
t=2(s

−2
y,t −ϕy)(xd
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2 = Op(1),

from which we obtain
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From Lemma A.1, and the fact that Jx(s) is independent of Wu(s) and Wy(s), we get
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as T → ∞, where =d signifies equality in distribution. By combining this with β = b/T and

Tβ

(
1

T2

T

∑
t=2
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y,t (xd
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2
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, (A17)

we obtain

t–QGLS →w
bρxu

γ

√∫ 1

0
Jd
x,c(s)2ds + ρxu

∫ 1
0 Jd

x,c(s)dWx(s)√∫ 1
0 Jd

x,c(s)2ds
+
√

1 − ρ2
xuZ, (A18)

as required for the proof. �

Proof of Proposition 2.

Let us denote by β̂ and ρ̂ the LS estimators of β and ρ, respectively. Since T(β̂ − β) and

T−1/2xd
t−1 are Op(1),

ϵ̂y,t = yd
t − β̂xd

t−1 = ϵy,t − (β̂ − β)xd
t−1 = ϵy,t + Op(T−1/2),

and, by further use of T(ρ̂ − ρ) = Op(1), we can similarly show that ϵ̂x,t = ϵx,t + Op(T−1/2).
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where
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∑
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By the same arguments
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and so we obtain

γ̂ = γ + Op(T−1/2). (A22)

Consider ŝ2
y,t. We now show that (σ̂2

y,t − σ2
y,t) = op(1). The proof begins by noting that

by the consistency of ϵ̂m,t for m ∈ {x, y.x}, (ϵ̂2
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m,t), and hence also (êm,t − em,t), are

Op(T−1/2). Now, while these results are just point-wise in t, it can be shown (by direct
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Thus, since ϵ2
m,t = λ′

mem,t + (ϵ2
m,t − s2

m,t),
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whose order depends on the assumed number of finite moments of ϵm,t. With four moments,

by the ergodic theorem, T−1 ∑T
t=qm+2 em,t(ϵ2

m,t − s2
m,t) = op(1). It follows that

λ̂m − λm = op(1), (A26)
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and therefore

ŝ2
m,t = λ̂′

m êm,t = λ′
mem,t + (λ̂m − λm)

′ êm,t + λ′
m(êm,t − em,t) = s2

m,t + op(1). (A27)

By using this, the consistency of γ̂, and Taylor expansion,

ŝ2
y,t = γ̂2ŝ2

x,t + ŝ2
y.x,t

= γ2s2
x,t + s2

y.x,t + (γ̂2 − γ2)ŝ2
x,t + γ2(ŝ2

x,t − s2
x,t) + (ŝ2

y.x,t − s2
y.x,t)

= s2
y,t + op(1). (A28)

Note that (ŝ−2
y,t − s−2

y,t )
2 ≤ 2(ŝ−4

y,t − s−4
y,t ). This, (ŝ2

y,t − s2
y,t) = op(1) and Taylor expansion give

1
T

T

∑
t=q+2

(ŝ−2
y,t − s−2

y,t )
2 = op(1),

where q = max{qx, qy.x}. Application of the Cauchy–Schwarz inequality now yields

1
T2

T

∑
t=q+2

(ŝ−2
y,t − s−2

y,t )(xd
t−1)

2 ≤
(

1
T

T

∑
t=q+2

(ŝ−2
y,t − s−2

y,t )
2

)1/2(
1

T3

T

∑
t=q+2

(xd
t−1)

4

)1/2

= op(1).

Hence,

1
T2

T

∑
t=q+2

ŝ−2
y,t (xd

t−1)
2 =

1
T2

T

∑
t=q+2

s−2
y,t (xd

t−1)
2 +

1
T2

T

∑
t=q+2

(ŝ−2
y,t − s−2

y,t )(xd
t−1)

2

=
1

T2

T

∑
t=q+2

s−2
y,t (xd

t−1)
2 + op(1), (A29)

and, by using the same arguments as in Proof of Theorem 2 of Andrews and Guggenberger

(2012), we can further show that

1
T

T

∑
t=q+2

ŝ−2
y,t xd

t−1ϵy,t =
1
T

T

∑
t=q+2

s−2
y,t xd

t−1ϵy,t +
1
T

T

∑
t=q+2

(ŝ−2
y,t − s−2

y,t )xd
t−1ϵy,t

=
1
T

T

∑
t=q+2

s−2
y,t xd

t−1ϵy,t + op(1). (A30)

These results, together with Taylor expansion, imply

t–FQGLS =
∑T

t=q+2 ŝ−2
y,t xd

t−1yt√
∑T

t=q+2 ŝ−2
y,t (xd

t−1)
2

= Tβ

(
T−2

T

∑
t=q+2

ŝ−2
y,t (xd

t−1)
2

)1/2

+
T−1 ∑T

t=q+2 ŝ−2
y,t xd

t−1ϵd
y,t√

T−2 ∑T
t=q+2 ŝ−2

y,t (xd
t−1)

2

= Tβ

(
T−2

T

∑
t=q+2

s−2
y,t (xd

t−1)
2

)1/2

+
T−1 ∑T

t=q+2 s−2
y,t xd

t−1ϵd
y,t√

T−2 ∑T
t=q+2 s−2

y,t (xd
t−1)

2
+ op(1)

= t–QGLS + op(1), (A31)
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and so the proof is complete. �

Proof of Proposition 3.

As we show in Proposition 2 the asymptotic distribution of t–FQGLS under the null hypoth-

esis is exactly the same as the asymptotic distribution of the unit root t-statistic of Andrews

and Guggenberger (2009a; 2009b). Given this, by the arguments in Andrews and Guggen-

berger (2009b), the limit of the coverage probabilities of the t–FQGLS confidence intervals

equal that of the corresponding intervals in Andrews and Guggenberger (2009a; 2009b),

which is greater than or equal to the nominal size 1 − α, where α is the significance level.

Hence, the t–FQGLS confidence intervals have correct asymptotic size. �
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