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Abstract

This paper develops a model of policymaking under political conflict. In the model,
policy changes may take the form of kludges: incremental modifications to existing policy
that leave fundamental inefficiencies unresolved, resulting in excessively complex policies.
Kludged policies emerge and persist when there is political conflict between ideologically
opposed parties. Parties are more likely to implement policy kludges in the presence of
frictions that impede policymaking. Further, political conflict may lead to obstructionist
behavior, whereby one party deliberately introduces policy kludges to impede opponents’
attempts to change policy.

1 Introduction

Complexity in public policy often arises from the use of kludges – piecemeal attempts to
modify existing policy that paper over existing problems rather than resolving them in a
fundamental way. Consider the Affordable Care Act (ACA), an American healthcare law
passed in 2010. A primary goal of the ACA was to expand access to health insurance,
and it did so by introducing mechanisms (including mandates, subsidies and insurance
exchanges) that were designed to complement, rather than replace, the existing complex
patchwork of private and public insurance options. A common view from both proponents
and opponents was that the goals of the ACA could have been achieved, with far less
policy complexity, by alternative policy solutions such as a single-payer healthcare system.
Further, some parties who were sympathetic to the goals of the ACA nonetheless opposed
its passage, because they believed that said passage would cement undesirable features of
the existing insurance system and block any future move to a less-complex single-payer
system.

This example highlights two key features of policy kludges. First, kludges allow
policymakers to avoid difficult policy overhauls, but at the cost of additional policy
complexity. Second, policy kludges exacerbate the persistence of existing policy.

In this paper, we present a dynamic model of policymaking that captures these features.
In the model, policymaking is incremental: policy is composed of a sequence of rules that
are added or removed, one rule at a time. The novel aspect of our model is that policy is
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backwards-dependent: when undoing policy, the policymaker has to remove recently-added
rules before he can remove older rules. Our motivation for modeling backward-dependence
is the idea that new rules build upon, and fill gaps in, existing rules. This complementarity
implies backward-dependence: policy modifications rely on existing policy for coherence,
and thus render removal of existing policy even more costly and difficult. One example is
the Alternative Minimum Tax (AMT) of 1969: many observers consider the AMT to be
an unnecessarily complex component of the American tax code, but also believe that it
will be difficult to remove or drastically change the AMT because many (more recently
enacted) aspects of the federal tax system have come to rely on the AMT. As Teles (2013)
points out, “new ideas have to be layered over old programs rather than replace them ... ”

A policymaker may seek to add or remove rules to achieve his policy ideals. Kludge
has a natural interpretation in this setting, in terms of excessive complexity: a policy is
kludged if an alternative policy achieves the same position with less complexity, i.e., using
less rules. The fundamental tension that policymakers face in the model is a tradeoff
between achieving policy ideals and reducing policy kludge. To fix ideas, consider a
policymaker whose ideal policy position lies on the left of a left-right ideological spectrum.
The policymaker may progress towards his ideal by adding new left-leaning rules to modify
existing policy. Such additions patch over existing rules instead of removing them, which
means that policy complexity may be exacerbated by a combination of old and new rules.
Further, this complexity may persist in the long-run: backward-dependence means that
post-modification, a policymaker cannot remove undesirable old rules without first undoing
his own modifications, which he may be reluctant to do. Alternatively, the policymaker
may choose to start off removing undesirable existing rules before implementing his
preferred rules; in doing so, he reduces policy complexity, but may delay the attainment
of his policy ideal.

Our analysis focuses on policymaking under political conflict. We consider a game
between two policymakers, with conflicting ideological preferences, who take turns to make
policy. This captures the premise that policymakers have to anticipate how opponents
will respond in the future to their current policy changes. We provide a taxonomy of the
factors that tend to favor the emergence and persistence of kludge.

First, kludge arises from conflict between parties with strong and conflicting ideological
preferences. An ideologically zealous policymaker prioritizes adding new rules to patch
over existing policy (and thus achieving his policy ideal quickly) over removing rules
made by his opponent (and thus reducing complexity in the long-run). Over the long run,
conflicting rules set by conflicting policymakers cancel out each others’ effect on policy
positions, while introducing additional compexity with each additional rule; the result is
persistent policy kludge.

One implication of this logic is that an increase in political competition may lead
to an increase in policy kludges. The model thus suggests that countries with intense
political competition (such as the United States) may experience a greater degree of policy
complexity than countries with little political competition (such as China or Singapore).

The model also suggests that kludge is more likely to arise in settings where institutional
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frictions make it difficult for policymakers to effect policy changes. This result provides
some insight into recent claims about the origins of kludge in American public policy.
An influential article by Teles (2013), while discussing political kludge in the context of
American public policy, promugulates the common view that the excessive complexity of
existing American public policy is driven by inherent conservatism of American governing
institutions, which make it difficult to create new laws and undo existing laws.

A second phenomenon that emerges under political conflict is obstructionism. An
ideologically zealous policymaker may intentionally introduce rules that do not improve the
policy position, but serve to obstruct his opponent’s future policy changes (which would
obviously be unfavourable to the original policymaker). Interestingly, the optimal form of
such an obstructionary strategy depends on the strength of the opponent’s ideological
preferences.

Against a ideologically moderate opponent, the policymaker generates intentional
complexity: he introduces ideology-neutral rules that, due to backward-dependence, have
to be removed before other ideology-relevant rules may subsequently be removed. One
way to think about this result is that policymakers, in an attempt to protect their policy
gains, may implement policy in a excessively complex fashion that stymies the undoing
of said policy. This is consistent with the observation that policymakers often construct
complicated bureaucracies (with no apparent ideological purpose) to implement policy
(see, e.g., Moe 1989); our interpretation is that these bureaucracies serve as a moat to
protect their policy gains from opponents.

On the other hand, against an ideologically zealous opponent, the policymaker may
engage in strategic extremism: he pursues policy outcomes that are even more ideologically
extreme than his preferences would naively dictate, so as to delay the progress of his
opponent in the future. The model thus provides a potential explanation for strategic
extremism in policymaking, and suggests that such behavior emerges in conflicts against
zealous opponents.

Third, we show that the potential for political conflict may lead to what we call
appeasement. In a situation where a moderate policymaker has the opportunity to add
new rules that favour his preferred policy position, he may instead choose to do nothing.
The reason is that the moderate party anticipates that his ideologically zealous opponent
will (upon taking control) behave aggressively and patch over existing policy with new
rules, rather than undoing any rules that the moderate may have implemented. This
means that any rules that the moderate implements will not have any effect on policy
in the long run, while irrevocably introducing unnecessary kludge. The moderate thus
prefers to avoid such kludge by not introducing any new rules in the first place. In this
sense, moderate policymakers may choose not to act even when they do not currently face
any political constraints.

While we emphasize the applications of our model to public policy, we believe that
it has relevance for rulemaking within organizations as well. In particular, given that
the rulemaking process within organizations is incremental and backwards-dependent
(as anyone who has ever sat on a university committee will surely attest to), the model
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suggests that intra-organizational conflict may result in the development of kludge, in the
form of excessively complicated and bureaucratic rules.

1.1 Literature Review

Ely (2011) study how kludge may arise and persist in single-player adaptive processes.
Their focus is on how random shocks to the environment may cause kludges to accumulate,
resulting in persistently inefficient outcomes. We take a distinct approach to study kludge.
First, we focus on how conflict between multiple players with conflicting ideals may
exacerbate the formation of kludge. Second, instead of assuming that players behave
adaptively (and thus myopically), we allow for patient and strategic behavior, but assume
that players face exogenous political constraints and can only make small, ‘local’ changes
to policy. This approach allows us to derive distinctive implications for the emergence of
policy complexity under political conflict.

A number of papers from various literatures explore the idea that rule development
may be path-dependent. Callander and Hummel (2014) consider a model where successive
policymakers with conflicting preferences strategically experiment to find their preferred
policy. The first policymaker benefits from a ‘surprising’ experiment outcome, because it
deters experimentation by the second policymaker and thus preserves any policy gains
by the first policymaker. Ellison and Holden (2013) study a model of endogenous rule
development where there are exogenous constraints on the extent to which new rules may
‘overwrite’ old rules. Compared to these models, our paper introduces path dependence
through a distinct mechanism – backwards dependence – and thus produces very different
implications.

2 Model

A policy φ is an ordered set of rules. For any two policies φ = {d1, ...dn} and φ′ =
{d′1, ..., d′n′}, denote the concatenated policy composed of φ followed by φ′ as φ t φ′ =
{d1, ..., dn, d

′
1, ..., d

′
n′}. We say that φ is adjacent to φ′ (equivalently, φ′ is adjacent to φ)

if φ′ = φ t {d} for some singleton rule d.
Each rule is characterized by its ideological direction: d ∈ {−1, 0, 1}. We may think

of d = −1 as a left-leaning rule, d = 1 as a right-leaning rule, and d = 0 as a neutral rule.
The ideological position ρ (φ) of policy φ is the sum of all rules in φ, and the complexity
γ (φ) of policy φ is the total number of rules in φ. For example, if φ = {1,−1, 0, 1}, then
ρ (φ) = −1 and γ (φ) = 4 (see Figure 1).

Two players, (L)eft and (R)ight, play a policymaking game in continuous time. Denote
the time-t policy as φt; the game starts with the empty policy, which we call the origin:
φ0 = {}. In any time t, one of the two players It ∈ {L,R} is in control. At each instant t,
from the current policy φt, It can target any policy adjacent to φt.

1. While It targets a policy φ′ that is an extension of φt (i.e. φ′ = φt t {d} for some
singleton d), the policy randomly switches from φt to φ′ with constant arrival rate p,
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Figure 1: φ = (1,−1, 0, 1)

and we say that It extends policy.

2. While It targets the (unique) policy φ′′ that is a truncation of φt (i.e. φt = φ′′ t {d}
for some singleton d), the policy randomly switches from φt to φ′′ with constant
arrival rate q, and we say that It undoes policy.

3. It can also choose not to target any adjacent policy, in which case the policy φt

remains unchanged, and we say that It stagnates.

Notice that extending policy corresponds to adding a new rule to the existing policy,
whereas undoing policy corresponds to removing the most recently-added rule from the
existing policy. We may think of p and q as reflecting the magnitude of institutional
frictions in the policymaking process; the larger p (resp. q) is, the more difficult for
policymakers to add (resp. remove) rules. We assume that rules are easier to add than to
remove: p > q > 0.

Change of control from one play to the other is stochastic. Player L starts the game
in control. At each instant that L is in control, he loses control to R with constant arrival
rate λ > 0. Once R gains control, he is in control forever after. We say that λ is player
L’s vulnerability.

Preferences The instantaneous payoff of player I ∈ {L,R} at time t depends on the
policy in place:

πI (φt) = −ζI |ρ̂I − ρ (φt)| − γ (φt) (1)

where ρ∗I ∈ Z is his ideal, and ζI is his ideological zeal. With this payoff function,
players prefer policies that are closer in ideological position to their ideals. Each player I
discounts future payoff at rate r, i.e., his continuation payoff at t is

VI,t = E

[∫ ∞
τ=t

e−rτπI (φτ ) dτ
]

The two players have conflicting ideological positions: −ρ∗L < 0 and ρ∗R > 0. Given
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the current policy φt, define player I’s favoured direction dI,t to be the direction from the
current policy φt’s ideological position to I’s ideal: dI,t = ρ̂I−ρ(φt)

|ρ̂I−ρ(φt)| . (If ρ̂I − ρ (φt) = 0,
i.e. φt is an ideal policy, then dI,t is undefined.)

We restrict attention to ζL > 1 and ζR > 1, i.e. each player has a sufficiently
strong preference over ideological position. This assumption ensures that adding rules is
potentially profitable, so that there is a meaningful tradeoff between extending and undoing
policy: by adding a rule in his favoured direction, player I increases his instantaneous
payoff by ζI − 1 > 0 (policy moves one step closer to I’s ideal, while policy complexity
increases by one). We’ll think of players with ζI close to one as moderates, and players
with high ζI as zealots.

For each I ∈ {L,R}, A policy φ is I-pure if there exists no other policy φ′ that
is both weakly closer to I’s ideal |ρ̂I − ρ(φ′)| ≤ |ρ̂I − ρ(φ)| and strictly less complex
(γ(φ′) < γ(φ)). A policy is kludged if it is neither L-pure nor R-pure. (See Figure 2.) Note
that there is a unique policy φ∗I that is both unkludged and ideal for I; this policy is the
I-pure policy with length ρ̂I .

complexity

ideology

unkludged

kludged

Figure 2: Kludged Policy

2.1 Discussion of the Model

Before proceeding, let us discuss the motivation behind some of our modelling choices.
The assumption that the policymaker may only remove the most recently added rule

reflects the premise that there are complementarities between rules: newer rules build
upon older rules and rely crucially on the context provided by these older rules, so that
removing older rules would render the newer rules incoherent, making the implementation
of policy ambiguous and confusing. We make the extreme assumption that such confusion
incurs effectively infinite costs, so that any older rule cannot be removed without first
removing all newer rules. We conjecture that relaxing this assumption, so that older rules
can be removed before newer rules but at a cost, will not change the main insights of the
model.

Our model assumes that policymaking is incremental: rules may only be added or
removed one at a time. As Hitchins (2008) and Teles (2013) point out, political constraints
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such as resistance by interest groups (see, e.g., Morris and Coate (1999)) force policymakers
to focus their efforts on incremental changes rather than complete overhauls.1 Building on
this interpretation, think of delays in adding or removing rules as being due to resistance
from political interest groups (who support or oppose those rules) that has to be overcome
before the changes are implemented.

The assumption that p > q captures the premise that there is hysteresis in policymaking,
so that rules are easier to add than to remove. This assumption matters for our results: it
ensures that player prefer (at least sometimes) to add rules in their favoured direction,
rather than remove unfavourable rules. In our setting, there is a natural motivation for
this premise: backward dependence implies that only the existing (most recent) rule may
be removed, whereas when adding a new rule, there may be multiple potential rules for
the policymaker to choose from. This means that the policymaker faces fewer constraints
when adding rules than when removing them. Our model captures this point in reduced
form, by assuming that the policymaker can add a new rule more quickly than he can
remove the most recent rule. Besides backward dependence, other reasons for hysteresis
have been extensively discussed and motivated in the literature; for example, Morris
and Coate (1999) argue that policies may be easier to enact than remove because, once
enacted, interest groups may make policy-specific investments and subsequently fight
harder against the removal of these policies.2

In the model, the ease with which policy can be modified (as represented by the arrival
rates p and q) is independent of the current policy position and of the policymaker’s
political stance. This assumption is made for tractibility; richer models that take into
account the political feasibility of potential changes may yield additional insights, although
we expect the main results of the current model to be preserved.

We model the two players’ preferences as being diametrically opposed, in the sense
that (at least at the origin) a rule that is good for L is bad for R, and vice versa. This
assumption is made for parsimony, and in fact makes kludge more difficult to produce
in the model: it maximizes each player’s motivation to undo rules introduced by his
opponent rather than add rules of his own. Accordingly, we expect models with richer
player preferences (and a richer space of policies) to preserve our main insights.

2.2 Technical Preliminaries

In this game, the relevant state variable is the combination (φt, It) of policy and the
identity of the player in control. With this in mind, we restrict attention to pure-strategy
Markov-perfect equilibria whereby for each policy φ, each player either selects a single
adjacent policy or stagnates at φ.

Lemma 1 A pure-strategy Markov-perfect equilibrium exists.
1Besides political constraints, cognitive limitations may introduce uncertainty about the impact of large-

scale policy changes and thus force policymakers to focus on making small ‘local’ changes to policy (see, e.g.,
Callander (2011)).

2For more in this vein, see Alesina and Drazen (1991)
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Each player I’s strategy defines a directed graph on the set of policies, whereby φ→ φ′

whenever I’s target at φ is φ′. We will restrict attention to equilibria where each player’s
graph is acyclic; this means that each player never returns to a policy that he previously
moved away from. This restriction does not have any substantive impact, and eliminates
only knife-edge equilibria where players are indifferent between adjacent policies, while
simplifying the exposition substantially.

Lemma 2 There exists a pure-strategy Markov-perfect equilibrium where both players’
graphs are acyclic.

Further, given I’s strategy and a policy φ(0), we define I’s trajectory ΦI(φ(0)) to be
the (possibly infinite) sequence of policies {φ(0), φ(1), ..., φ(n)} such that for each k ≥ 0, I
targets φ(k+1) when at φ(k). In other words, ΦI(φ(0)) is the sequence of policies (starting
from φ(0)) that I will move along on the equilibrium path while he is in control. (For
player L, the sequence may be interrupted if he loses control to R before reaching the last
policy in his trajectory.)

3 One-Player Game

In this section, we first analyze the subgame for the second player R. This analysis is
a useful starting point: it allows us to study optimal policymaking in the absence of
strategic interactions between players, and build some intuition for the rest of the analysis.

We start with some notation, followed by basic observations. First, suppose that
R’s trajectory starting from φ(0) is Φ = {φ(0), φ(1), φ(2), ..., φ(n)}. While at φ(k), R will
jump to φ(k+1) with arrival rate p (respectively q) if φ(k+1) is an extension (respectively
truncation) of φ(k). Denote this arrival rate by ψ(k). For k < n we can write the “asset
equation” for R’s value function as (r + ψ(k))VR(φ(k), R) = πR(φ(k)) + ψ(k)VR(φ(k+1), R);
or equivalently,

VR
(
φ(k), R

)
=
πR(φ(k)) + ψ(k)VR(φ(k+1), R)

r + ψ(k)
. (2)

Iteratively expanding this expression, we get (defining ψ(n) = 0):

VR
(
φ(k), R

)
=

n∑
j=k

∏j−1
i=k ψ(i)∏j

i=k
(
r + ψ(i)

)πR (φ(j)
)
. (3)

In other words, R’s value function at φ(k) is the discounted weighted average of his
instantaneous payoffs at each of the policies on his trajectory, starting from φ(k).

One implication of (3) is that if R extends in equilibrium, he always does so in his
favoured direction (so, R only extends at non-ideal policies). Adding a rule in his favoured
direction, by moving him towards his ideal, increases his instantaneous payoff; further, it
moves him closer to policies that are even closer to his ideal and thus even more lucrative.
This observation, and the fact that we focus on acyclic strategies, pins down the form of
R’s optimal strategy:
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Lemma 3 Fix policy φ. Then for some k ≥ 0 and k′ ≥ 0, R’s equilibrium trajectory
starting from φ is as follows: R will remove k rules from φ, then add k′ rules in his
favoured direction until his ideal is attained, and stagnate thereafter.

The case where φt is not R-pure highlights the tradeoff that R faces between attaining
his ideal and reducing kludge. The following proposition states that a zealous player
will extend (unless his ideal has been reached), whereas a moderate player will undo any
existing kludge.

Proposition 1 Fix all parameters except for ζR. Suppose that the current policy φ is
not R-pure. Then there exists ζ

R
(φ) > 1 such that, at φ, (i) R extends in his favoured

direction if ζR > ζ
R

; whereas (ii) R undoes if ζR < ζ
R

.

Underlying Proposition 1 is the following trade-off. Extending is the fastest way for
the player to move in his favoured direction. In comparison, undoing slows the player’s
progress towards his ideal, but reduces policy complexity. Thus an extremist (who cares
greatly about ideological bias relative to complexity) prefers to extend, whereas a moderate
(who cares more about complexity relative to bias) prefers to undo. The following example
clarifies this intuition in a simplified setting.

Example 1 Suppose that the starting policy φ = {−1}, and that ρ̂R = 1 (i.e., R’s ideal
is one step to the right of the origin). Then there are two candidates for R’s optimal
trajectory:

Φ = {{−1}, {−1, 1}, {−1, 1, 1}} ,

where R extends from φ until he achieves his ideal, and

Φ′ = {{−1}, {}, {1}} ,

where R removes the only rule from φ to return to the origin, then extends rightward to
reach his ideal. Applying (3), the value functions for R given each trajectory are:

V (φ,R; Φ) =w(0)πR(φ(0)) + w(1)πR(φ(1)) + w(2)πR(φ(2)) where

w(0) = 1
r + p

, w(1) = p

(r + p)2 , w(2) = p2

r(r + p)2 ,

V (φ,R; Φ′) =w′(0)πR(φ′(0)) + w′(1)πR(φ′(1)) + w′(2)πR(φ′(2)) where

w′(0) = 1
r + q

, w′(1) = q

(r + p)(r + q) , w
′
(2) = qp

r(r + p)(r + q) .

To compare the two continuation values, note the following facts.

1. πR(φ(k)) and πR(φ′(k)) are increasing in k: along each trajectory, R’s instantaneous
payoff increases with each step that he takes.

2. for each k ≥ 1, πR(φ′(k))− πR(φ(k)) = 2: the k-th policy in Φ′ has the same bias as,
but lower complexity than, the corresponding policy in Φ, and thus is more lucrative.
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3. w(0) < w′(0), whereas for k ∈ {1, 2}, w(k) > w′(k): compared to the Φ-value function,
the Φ′-value function puts more weight on the (less lucrative) early policy φ, and
less weight on the (more lucrative) later policies. This is because removing rules is
slower than adding rules (q < p), so R is stuck for a longer time at φ under Φ′ than
under Φ.

To summarize – the advantage of extending (Φ) over undoing (Φ′) is that it allows R
to move along the trajectory towards more lucrative policies more quickly; this advantage
is increasing in ζR. The disadvantage is that each policy after φ in Φ is more complex
and thus less lucrative than the corresponding policy in Φ′. Consequently, extending is
optimal for R if ζR is high, whereas undoing is optimal if ζR is low.

4 Kludge

In the next few sections, we use the two-player game to study the outcome of political
conflict between policymakers. This section shows how conflict between political opponents
leads to the emergence and persistence of kludge. We start with the main result. Define
ζ̄R = 1 + 2q

(p−q)( r
p+r ) and ζ

L
= 1 + 2p2λ

r((p+r)2+λ(2p+r)) .

Proposition 2 Suppose both players are sufficiently zealous: ζL > ζ
L

and ζR > ζ̄R.
Then

• From any starting policy, R’s trajectory consists only of right-sided rules, attains
R’s ideal, and ends there.

• Starting from the origin, L’s trajectory consists only of left-sided rules and attains
(possibly overshooting) L’s ideal.

Consequently, with positive probability, the long-run policy limt→∞ φt is kludged.

When both players are zealous, they add rules in opposite directions. These conflicting
rules cancel out in terms of policy bias, but add up in terms of complexity. The result is
kludge.

To understand this result, start by remembering (from Proposition 3) that a zealous
player R prefers to extend by adding right-sided rules rather than undoing any rules that
L put in place. In fact, when R is sufficiently zealous (ζR > ζ̄R), he will extend towards
his ideal at every non-ideal policy.

Such single-minded behavior by R simplifies dramatically the strategic considerations
for player L. In this case, L’s decision boils down to choosing between stagnating versus
adding left-sided rules. Loosely speaking, from L’s perspective, neutral and right-sided
rules are detrimental: their only effect is to increase complexity, while (weakly) damaging
L’s ideological position. (In the next section, we’ll see how this logic changes if the opponent
R is not zealous.) Consequently, L’s choice is effectively between adding left-sided rules
and stagnating.

Consider the tradeoff involved in adding left-sided rules (relative to stagnating at the
origin) from L’s perspective. In the short-run, whilst he is in control, L moves policy
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closer to his ideal. However, in the long-run, R will extend policy rightward to the R-ideal,
without first undoing the left-sided rules added by L. In other words, adding L-sided rules
adds long-run complexity without improving the long-run position. With this tradeoff in
mind, a zealous L thus chooses to add left-sided rules rather than stagnate because he
puts greater weight on ideological position over policy complexity.

To highlight the role of political conflict in producing kludge, consider the outcome of
the one-player game where R is in control starting from t = 0.

Proposition 3 On the equilibrium path of the one-player game, starting from the origin,
R adds rules in his favoured direction (i.e., to the right) until he attains the R-ideal policy,
then stagnates there. Consequently, every policy on the equilibrium trajectory is unkludged.

Proposition 3 describes the outcome in a setting where political competition is absent.
Here, R only extends policy in one direction, so kludge does not emerge either in the short
or long run. The point is that political conflict plays a crucial role in producing kludge.
Specifically, kludge arises when conflicting players add conflicting rules to policy without
undoing the rules implemented by their opponents.

Because R never undoes the rules that L previously added, any resulting kludge is
persistent. This can be inferred immediately from the observation that player strategies
are acyclic.3 Interestingly, backward-dependence exacerbates the persistence of kludge.
As R adds more rules to existing policy, it becomes prohibitively costly for him to remove
those rules introduced by L; to do so would require (due to backward depdendence) that
he first remove his own rules, and in doing so revert to unfavourable positions that he
is unwilling to tolerate. In contrast, in a model without backward dependence, R may
undo kludge in the long-run by removing rules added by L even after R has added his
own rules.

4.1 Avoiding Kludge: Appeasement

Proposition 9 specifies that kludge emerges if both players are sufficiently zealous. We
can produce a partial converse: if either player is sufficiently moderate, then long-run
policy is unkludged. Thus, kludges emerge and persist if and (loosely speaking) only if
both players are zealous.4 Define ζ

R
= 1 + q

p
(

1−( p
p+r )ρ̂L+ρ̂R

) .

Proposition 4 If either player is sufficiently moderate (ζL < ζ
L

or ζR < ζ
R

), then the
long-run policy limt→∞ φt is unkludged.

A moderate R will avoid long-run kludge by undoing the rules added by L on the
equilibrium path. The case where L is moderate is more interesting. In fact, when

3Note that acyclicity is not merely an assumption, and in fact is the generic equilibrium outcome of the
model.

4Our results focus on the cases where player R has extreme preferences (either high or low ζR). In each of
these cases, R’s optimal strategy has a simple characterization; which in turn simplifies the logic of strategic
interaction between the players. The case of intermediate preference intensities is more subtle (and, we think,
less interesting), and we defer it for now.
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L is moderate and R is zealous, strategic considerations cause L to engage in we call
appeasement: at the origin, L will stagnate rather than extend leftward. He does so to
avoid the production of kludge by R.

Proposition 5 Suppose L is sufficiently moderate and R is sufficiently zealous: ζL < ζ
L

and ζR > ζ̄R. Then L will stagnate at the origin, and the long-run policy limt→∞ φt is
unkludged.

Although L would increase his instantaneous payoff by adding left-leaning rules starting
from the origin (and in fact would do so in the absence of political competition), the
prospect of being succeeded by a zealot induces him to avoid adding any rules at all. L
anticipates that R, upon ascending to power, will not undo any existing rules but instead
will add right-leaning rules until he reaches his ideal. Thus, by adding rules while he
is in control, L shifts the policy position in his favour in the short-run, but increases
the amount of long-run kludge. A sufficiently moderate L (who cares little about policy
position relative to policy complexity) thus chooses not to add any rules at all, effectively
conceding the policymaking process entirely to his opponent.

5 Obstructionism

Intentional complexity – in the form of designs or rules that are intentionally made to be
excessively complex or confusing – appears in fields ranging from patent law to software
development. Meanwhile, a number of literatures have discussed the phenomenon of
obstructionism, whereby agents take actions that does not improve their current payoffs
from policy, but instead make it more difficult for their opponents to make progress. In
this section, we show how obstructionism manifests in public policy as a form of intentional
complexity, in the sense that policymakers deliberately implement excessively complex
policies to obstruct their opponents.

Two observations before diving in. First, in our model, only the first player L engages
in obstructionism, if at all: the second player R has no reason to engage in strategic
behavior of any sort. Second, only zealous players will engage in obstructionism: because
zealous players prioritize ideological position over policy complexity, they are willing to
tolerate the increased complexity that arises from obstructionist behavior. So, we focus
on the case where player L is zealous.

5.1 Intentional Complexity

In this section, we show that obstructionism against a moderate opponent optimally takes
a form we term intentional complexity. Specifically, the following proposition shows that
a zealous first player L will, after reaching his ideal policy, add neutral rules that increase
policy complexity without improving the policy’s ideological position.

Proposition 6 Fix all parameters except ζL and ζR. Then there exists ζ̄L and ζ
R

such
that if L is a zealot (ζL > ζL) and R is a moderate (ζR < ζ

R
), then along L’s policy
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sequence, he extends leftward until he reaches the L-pure, L-ideal policy, then (for one or
more steps) extends upward by adding neutral rules.

At first glance, this result may seem surprising: by adding neutral rules, L is moving to
a more complex policy without any improvement in his immediate ideological position. To
understand why L adds these neutral rules, remember that R is moderate, and thus will
attempt to undo any rules that L had added. Thus L can delay R’s rightward movement
simply by adding more rules that R is compelled to undo. In other words, these ostensibly
pointless rules that L adds serve as a bulwark against the future advance of R. And the
least costly way for L to construct this bulwark is to add neutral rules after attaining his
ideal policy (otherwise, to extend in either direction from his ideal policy would entail a
deterioration in his ideological position).

5.2 Strategic Extremism

When facing a zealous player R, player L may engage in a different form of obstructionism
that we term strategic extremism. Specifically, L may extend leftward even after attaining
his ideal policy, resulting in ‘extremist’ policies that lie left of L’s ideal.

Proposition 7 Suppose that the first player L is vulnerable (i.e, λ > 2p), and both
players are patient. If both players are zealots, then L will extend leftward at L’s ideal
policy. That is, there exists an r > 0 such that for all r < r, there exist ζ̄L and ζ̄R and if
ζL > ζ̄L and ζR > ζ̄R, then L will extend leftward at L’s ideal policy.

Proposition 7 tells us that when facing a zealous opponent, L ‘overshoots’ his ideal
by adding left-biased rules. This differs from how L behaves when he faces a moderate
opponent, in which case he doesn’t overshoot but instead adds neutral rules while staying
at his ideal.

With both types of obstructionism, L is attempting to delay R’s progress towards
his ideal. However, the way that L obstructs R depends on whether R is a moderate
(Proposition 6) or a zealot (Proposition 7). Recall that when R is a moderate, L can slow
his progress by adding neutral rules that R is compelled to remove before starting to move
rightward. Such a strategy fails when R is a zealot, because R will extend rightward rather
than undoing existing rules – so neutral rules do nothing to impede R’s progress. Instead,
L can delay R by adding left-biased rules, so that R’s starting point (when he takes
control) is further left. Doing so ensures that R takes a longer time to reach ideological
positions that are relatively unfavourable to L. Thus, by engaging in strategic extremism,
L profitably delays the reduction in his own payoffs that occurs as R moves rightward.

Notice that Proposition 7 applies only when player L is neither too patient nor too
impatient. Why? If L engages in strategic extremism, then compared to a strategy
whereby he stagnates at his ideal policy, he is:

• worse off in the short run, while the policy remains left of his ideological position,
before R takes control and extends rightward.
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• better off in the medium run, when the policy lies between L’s ideological position
and R’s ideological position, because overshooting delays R’s rightward progress;

• worse off in the long run, when R has attained his ideological bliss point, because by
extending leftward, L introduces more complexity into the policy over the long run.

Consequently, the medium-run advantages of strategic extremism overwhelm the short-
and long-run drawbacks only if L is neither too patient nor too impatient.

Propositions 6 and 7 highlight the point that the optimal form of obstructionism
depends on your opponent’s preferences; intentional compleixty is optimal against a
moderate opponent while strategic extremism is optimal against a zealous opponent.

6 Frictions

Now, we turn to consider the effect of frictions in policymaking that constrain the ability
of policymakers to add or remove rules to policy. For example, U.S. policymakers face
a high-friction environment. In the U.S. political system, there are a multitude of veto
points in the legislative process, and it is difficult for the party in power to successfully
shepherd legislative proposals through these veto points; with the result that attempts
to pass or undo legislation take longer to succeed. These frictions are often mooted as a
positive feature of U.S. democracy: by making it difficult to change policy, shifts in policy
position may be avoided, thus reducing policy bias.

The following proposition points out that such frictions come at a cost: high-friction
political systems may induce players to prioritize adding over removing rules, and thus
may result in the emergence and persistence of kludge. Conversely, low-friction political
systems avoid kludge because they ensure that (i) players do not engage in obstructionary
behavior, and that (ii) players undo undesirable rules, so that long-run kludge is avoided.

Proposition 8 Let p = p̂/χ and q = q̂/χ. Consider the two-player game, and fix all
parameters except the degree of friction χ. If R is sufficiently moderate (ζR < p̂+q̂

p̂−q̂ ), then
long-run policy is always unkludged for all χ. On the other hand, if ζR > p̂+q̂

p̂−q̂ , then

• There exists χ > 0 such that for χ < χ, on the equilibrium path, the first player L
extends in direction dL until he reaches the L-ideal policy, at which he stagnates;
whereas the second player R undoes any rules that L added, then extends in direction
dR until he reaches the R-ideal policy, at which he stagnates. Consequently, every
policy on the equilibrium path is unkludged.

• There exists χ > 0 such that for χ > χ, each player I extends in his favoured
direction at every policy that does not attain his ideal. Consequently, the long-run
policy is kludged with positive probability.

The intuition underlying this result is as follows. When frictions are high, changes
in policy are relatively slow in arriving. The policymaker anticipates that it is unlikely
for multiple policy changes to occur within his relevant time horizon, and thus focuses
on maximizing the payoff from the next policy change that he is attempting to make.
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Given our assumption that the second policymaker R not too moderate, each of them is
better off extending rather than to undoing (so as to get to a more favourable ideological
position more quickly). Kludge thus arises with positive probability because the second
player R will not attempt to undo any rules added by the first player.

On the other hand, when frictions are low, changes in policy arrive rapidly. Each
policymaker X anticipates that he is likely to achieve any sequence of policy changes
he wishes to make in a negligibly short period of time; thus, he chooses the sequence
that arrives at his ideal policy (i.e. undoing any existing rules, then extending in his
favoured direction). Further, the first player L avoids an obstructionary strategy because
he anticipates that any obstructionary rules that he adds will be dismantled by R almost
immediately, and thus that such a strategy would be counterproductive (because it reduces
L’s payoffs while he is in control).

A caveat: although Proposition 8 emphasizes that kludge emerges and persists only
in sufficiently high-friction systems, the impact of friction on the expected amount of
long-run kludge,

E
[

lim
t→∞

(γ(φt)− |ψ(φt)|)
]
,

is nonmonotone. In fact, as the degree of friction γ goes to infinity, the probability that
the long-run policy is kludged goes to zero. This is because increased friction reduces the
ability of players to change policy; in particular, in a high friction envronment, L is unlikely
to successfully add (left-biased) rules before R gains control, so policy is unlikely to become
kludged. That said, arbitrarily high frictions are unrealistic in practice, because of the
need for policy to be adapted readily to shocks in the political environment (e.g. economic,
cultural or technological changes).5 So a more careful interpretation of Proposition 8
is that, at least within an intermediate range, an increase in policymaking friction may
induce an increase in policy kludge.

7 Conclusion

In this paper, we have worked out a simple model of sequential, path-dependent poli-
cymaking. The key assumption is technological: when undoing existing policy, newer
rules have to be removed before older rules. The analysis focuses on the effect of political
conflict between policymakers. We show that a number of interesting phenomena arise
from strategic interactions in the model: how kludge emerges when zealots conflict, various
forms of obstructionary behavior, and the impact of frictions on long-run policy outcomes.

Throughout the paper, we have emphasized the application of our model to public
policy. However, we believe that our model may also be relevant to other settings, such
as the politics of organizational policy-making. The insights we derive in the model can
be straightforwardly reinterpreted for an organizational context; for example, our results
on long-run kludge suggest that political conflict between different factions within an

5To capture this point, a richer model could incorporate random shocks to either preferences or payoffs that
require policy to adapt in response.
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organization may give rise to inefficiently bureaucratic routines and procedures within the
organization.6

Returning to the topic of public policy, how might the insights of this model be applied
to the design of political institutions? In particular, what is the optimal degree of political
competition? Interpret the number of players in our model in terms of the degree of
political competition, the one-player game corresponds to an uncompetitive setting (e.g.
an autocracy) whereas the two-player game corresponds to a competitive setting (e.g. a
democracy). This interpretation suggests that an increase in political competition may
reduce the occurrence of extremely biased policies, but increased competition comes at the
cost of increased long-run policy complexity.7 Thus, a farsighted social planner who abhors
policy complexity may prefer an autocratic political system over a democracy. That said,
that the detrimental effects of political competition on complexity are moderated when
policymakers are not too zealous. This suggests that in culturally homogenous societies,
where competing political parties have moderate policy preferences, it may be optimal to
implemental democratic political institutions. On the other hand, culturally fragmented
or heterogenous societies may be better off with autocratic institutions, so as to avoid the
emergence of policy kludge.

8 Appendix

Some notation: VI(φ, J) is the equilibrium continuation value for player I when the current
policy is φ and player J is in control. VI(φ, I; Φ) is the equilibrium continuation value for
player I, conditional on pursuing trajectory Φ and and on the current policy φ lying on
the trajectory Φ, when he is in control.

Proof of Lemma 1 Lippman (1976), Theorem 7; notice that we apply the more
general assumptions from Lippman (1975). These more general assumptions do not affect
the argument. �

Proof of Lemma 2 First, we’ll show that in any equilibrium, R’s strategy is cyclic.
To show that R’s strategy is acyclic, assume otherwise and consider an policy φτ , τ ∈ (t, t′),
that is adjacent to φt. Moreover, our restriction to pure strategies implies that for any
τ ′, φτ ′ is either φt or φτ for all τ ′ ∈ (t, t′). Since ηR > 1, adjacent policies produce
different instantaneous payoffs. That is, πR(φt) , πR(φτ ). Therefore, R is strictly better
off stagnating at φt if πR(φt) > πR(φτ ), and at φτ if πR(φt) < πR(φτ ) than moving to φt′ ,
a contradiction.

Now, fix any pure-strategy equilibrium, and consider L’s strategy. If L undoes from
policy φ to policy φ′, then it must be that L switches indefinitely between φ and φ′,

6Relatedly, one might expect to see more kludge in the code of teams of software developers where members
of the team have conflicting ideals.

7Note that an increase in policymaking frictions involves a similar tradeoff: increased friction results in
slower movement towards extreme policies, but makes policymakers more inclined to implement kludged
policies.
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and that L is indifferent between φ and φ′. But then L would receive the exact same
continuation value from stagnating at φ′ instead (and also, the continuation values starting
from any other policy would remain unchanged as well). Thus the alternative pure strategy
where L stagnates at φ is also an equilibrium. �

Proof of Proposition 1 Fix φ. We start with the case where φ is neither R-ideal
nor R-pure. Let σk be the strategy of removing k rules from φ and then add R-favoured
rules until R’s ideal is reached, and (φk(0), φ

k
(1), ..., φ

k
(nk)) be the associated trajectory

of nk + 1 steps, where φk(0) = φ. Lemma 3 ensures that we can restrict attention to

strategies σk for k ∈ [0, γ (φ)] such that π
(
φk(k)

)
< π

(
φk(k+1)

)
. Let Vk

(
φ̃
)

be the
value function of taking strategy σk at an on-trajectory policy φ̃. First we argue that
we are done if we show that (a) Vk (φ) is linear in ζR, (b) limζR→1 Vk (φ) < 0 and
limζR→∞ Vk (φ) = ∞. This is because (a) and (b) together imply that for any k, there
exists ζk

R
(φ) ∈ (1,∞) such that V0 (φ)− Vk (φ) < 0 if and only if ζR < ζk

R
(φ). Therefore,

if we define ζ
R

(φ) = mink∈[0,γ(φ)]

{
ζk
R

(φ)
}

, then we can conclude that R will optimally
play σ0 (i.e. extend at φ) if and only if ζR > ζ

R
(φ); otherwise he will prefer some σk, and

undo at φ instead.
Now we prove (a). Note that the value function Vk, given strategy σk, for an on-

trajectory policy satisfies the equation

rVk

(
φk(m)

)
= πR

(
φk(m)

)
+ ψk(m)

(
Vk

(
φk(m+1)

)
− Vk

(
φk(m)

))
,

where ψk(m) = p if φk(m+1) is extended from φk(m), ψk(m) = q if φk(m+1) is undone from φk(m),
and ψk(m) = 0 if m = nk. This can be rewritten as

Vk

(
φk(m)

)
=
πR

(
φk(m)

)
+ ψk(m)Vk

(
φk(m+1)

)
r + ψk(m)

; (4)

further, decomposing R’s instantaneous payoff for each policy into the “position” compo-
nent and the “complexity” component:

πR (φ) = ζRπ
ρ
R (φ) + πγR (φ) = −ζR |ρ̂R − ρ (φ)| − γ (φ) ,

we can decompose Vk (φ) into ζRV ρk (φ) + V γk (φ) where

V ρk

(
φk(m)

)
=
πρR

(
φk(m)

)
+ ψk(m)V

ρ
k

(
φk(m+1)

)
r + ψk(m)

, V γk

(
φk(m)

)
=
πγR

(
φk(m)

)
+ ψk(m)V

γ
k

(
φk(m+1)

)
r + ψk(m)

.

This proves that Vk (φ) is linear in ζR.
Next, we prove (b). We start with limζR→1 V0 (φ)− Vk (φ) < 0. To see this, note that

along the trajectory corresponding to σ0, i.e.

lim
ζR→1

πρR

(
φ0

(m)

)
+ πγR

(
φ0

(m)

)
= lim
ζR→1

πρR

(
φ0

(0)

)
+ πγR

(
φ0

(0)

)
= πR (φ) , for all m. (5)
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That is, πρR
(
φ0

(m)

)
+ πγR

(
φ0

(m)

)
is constant when ζR = 1. Therefore, limζR→1 V0 (φ) =

πR(φ)
r . On the other hand, since φ is not pure limζR→1 π

ρ
R

(
φk(m)

)
+πγR

(
φk(m)

)
≥ πρR (φ) +

πγR (φ)+1 for some m. Moreover, since limζR→1 π
ρ
R

(
φk(m)

)
+πγR

(
φk(m)

)
is weakly increasing

in m, limζR→1 Vk (φ) > πR(φ)
r . Therefore, our claim that limζR→1 V0 (φ) − Vk (φ) < 0

follows.
We show that limζR→∞ V0 (φ)− Vk (φ) =∞. Note that this follows when V ρ0

(
φ0

(0)

)
=

V ρk (φ) > V ρ0 (φ) = V ρ0

(
φk(0)

)
. Now we claim that V ρ0

(
φ0

(m)

)
> V ρk

(
φk(m)

)
for all m by

induction. For m = n0, note that πρR
(
φ0
n0

)
= πρR

(
φknk
)
, and πρR

(
φknk
)
> πρR

(
φkm
)

for
all m ∈ [n0, nk]. Therefore, V ρ0

(
φ0

(n0)

)
= V ρk

(
φk(nk)

)
> V ρk

(
φk(n0)

)
. Next, suppose that

V ρ0

(
φ0

(m)

)
> V ρk

(
φk(m)

)
for all m > m̄+ 1 for some m̄. Note that

V ρ0

(
φ0

(m̄)

)
= r

r + ψ0
(m̄)

πR

(
φ0

(m̄)

)
r

+
ψ0

(m̄)

r + ψ0
(m)

V ρ0

(
φ0

(m̄+1)

)

= r

r + ψ0
(m̄)

πR

(
φ0

(m̄)

)
r

+
(

1− r

r + ψ0
(m̄)

)
V ρ0

(
φ0

(m̄+1)

)

= r

r + ψk(m̄)

πR

(
φ0

(m̄)

)
r

+
(

r

r + ψk(m̄)
− r

r + ψ0
(m̄)

)V ρ0 (φ0
(m̄+1)

)
−
πR

(
φ0

(m̄)

)
r

+
ψk(m̄)

r + ψk(m)
V ρ0

(
φ0

(m̄+1)

)

Since ψ0
(m) ≡ p ≥ ψk(m) for all m, r

r+ψk(m̄)
> r

r+ψ0
(m̄)

. Also, note that V ρ0
(
φ0

(m̄+1)

)
>

πR(φ0
(m̄))
r because πρR

(
φ0

(m)

)
is increasing in m, and V ρ0

(
φ0

(n0)

)
= πρ

R(φ0
(n0))
r . Therefore,

r

r + ψk(m̄)

πR

(
φ0

(m̄)

)
r

+
(

r

r + ψk(m̄)
− r

r + ψ0
(m̄)

)V ρ0 (φ0
(m̄+1)

)
−
πR

(
φ0

(m̄)

)
r

+
ψk(m̄)

r + ψk(m)
V ρ0

(
φ0

(m̄+1)

)

≥ r

r + ψk(m̄)

πR

(
φ0

(m̄)

)
r

+
ψk(m)

r + ψk(m)
V ρ0

(
φ0

(m̄+1)

)
.

Then, πR
(
φ0

(m)

)
> πR

(
φk(m)

)
and the induction hypothesis that V ρ0

(
φ0

(m̄+1)

)
>
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V ρk

(
φk(m̄+1)

)
together imply

V ρ0

(
φ0

(m̄)

)
≥ r

r + ψk(m̄)

πR

(
φ0

(m̄)

)
r

+
ψk(m)

r + ψk(m)
V ρ0

(
φ0

(m̄+1)

)

>
r

r + ψk(m̄)

πR

(
φk(m̄)

)
r

+
ψk(m)

r + ψk(m)
V ρ0

(
φk(m̄+1)

)
= V ρk

(
φk(m̄)

)
.

This proves V ρk (φ) > V ρ0 (φ).
The case where φ is neither R-ideal nor R-pure is completely analogous. �

Lemma 4 If ζR > ζ̄R, then R extends in his favoured direction at any policy φ that is
not R-ideal.

Proof of Lemma 4 We adopt the terminology of Proposition 1. Choose ζ̄R =
1 + 2q

(p−q)( r
p+r ) . We’ll proceed by induction over k on the following statement: If ζR > ζ̄R,

then R extends in his favoured direction at any policy with complexity ≤ k. Consider a
policy φ = (r(1), ..., r(k+1)) with complexity γ(φ) = k + 1. By the induction hypothesis, R
will optimally extend the truncated policy φ′ = (r(1), ..., r(k)) in his favoured direction; so
R will remove at most one rule from φ before extending. Thus we may restrict attention
to σ0 (whereby R extends from φ immediately) and σ1 (whereby R removes one rule from
φ to get φ′, then extends from φ′). In particular, R prefers to extend from φ if and only if
V0(φ) > V1(φ). Let n = |ρ̂R − ρ (φ)|; note that n ≥ 1. As a preliminary step: applying (4)
iteratively, we get

Vk (φ) =
nk∑
m=0

 1
r + ψk(m)

m−1∏
j=0

ψk(j)

r + ψk(j)
π
(
φk(m)

)

where ψk(j) =
{

p : j ≥ k
q : j < k

. Note that we only have to consider the cases r(k+1) = −1 and

r(k+1) = 0: σ1 cannot be optimal for the case r(k+1) = 1, as it would produce an cyclic
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trajectory for R.

V0 (φ) =
n0−1∑
m=0

(
1

r + p

(
p

r + p

)m
(−ζR(n0 −m)− (γ(φ) +m))

)
+ 1
r

(
p

r + p

)n0

(−(γ(φ) + n0)) ,

V1 (φ) = 1
r + q

(−ζRn0 − γ(φ))

+
n0−1∑
m=1

(
1

r + p

q

r + q

(
p

r + p

)m−1
(−ζR(n0 −m)− (γ(φ) +m− 2))

)

+ 1
r

q

r + q

(
p

r + p

)n0−1
(−(γ(φ) + n0 − 2)) .

Some calculations reveal that

V0 (φ)− V1 (φ) =
−2q + (ζR − 1)(p− q)

(
1−

(
p
p+r

)n0)
r(q + r) ,

so R prefers to extend rather than undo (equivalently, V0 (φ) ≥ V1 (φ)) if ζR ≥ 1 +
2q

(p−q)(1−( p
p+r )n0) . Since ζ̄R ≥ 1 + 2q

(p−q)(1−( p
p+r )n0) , we have the required result for the

case r(k+1) = −1. The case r(k+1) = 0 is very similar: we get

V0 (φ)− V1 (φ) =
−q + (ζR − 1)p

(
1−

(
p
p+r

)n0)
r(q + r) ,

so R prefers to extend rather than undo (equivalently, V0 (φ) ≥ V1 (φ)) if ζR ≥ 1 +
q

p(1−( p
p+r )n0) . Again, since ζ̄R > 1 + q

p(1−( p
p+r )n0) , we have the required result. �

Lemma 5 At any policy, player L’s trajectory is a finite sequence.

Proof. Denote L’s trajectory, starting from the origin, as φ(0), φ(1), .... Choose k̃ =
ζR(ρ̂L + ρ̂R) + ρ̂R. We claim that the length n of L’s trajectory does not exceed k̃, which
is equivalent to claiming that no policy in L’s trajectory has length ≥ k̃.

The first step to establishing this claim is to show that VL(φ(0)) ≥ −k̃/r, where φ(0)

is the origin. To see this, note that if L stagnates at the origin, then he ensures (via
Lemma 3) that only R-pure policies are attained on the continuation path. Amongst
these policies, L’s instantaneous payoff is minimized at the R-ideal policy, in which case
πL = −ζR(ρ̂L + ρ̂R)− ρ̂R = −k̃; this implies that a lower bound for L’s continuation value
at the origin is VL(φ(0)) > −k̃/r.

Choose m such that mζR
r+p+λ > k̃/r. Note that VL(φ(m)) = πL(φ(m))

r+p+λ + p
r+p+λVL(φ(m+1))+

λ
r+p+λVLR(φ(m)) <

πL(φ(m))
r+p+λ ≤ −k̃/r ≤ VL(φ(0)), where VLR(φ(m)) is L’s continuation

payoff at policy φ(m) with R in control. But this contradicts the fact that VL(φ(n)) must
be weakly increasing in n (remember that L is only willing to extend from φ(n) to φ(n+1)

if he increases his continuation value in doing so). We conclude that, by contradiction,
L’s trajectory is finite.
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Lemma 6 If ζR > ζ̄R, then every policy on L’s trajectory, starting from the origin, adds a
left-leaning rule to the previous policy; equivalently, every policy on L’s trajectory consists
solely of left-leaning rules.

Proof of Lemma 6 Consider, for L, a finite trajectory Φ = (φ(0), φ(1), ..., φ(n))
starting from the origin. This trajectory induces a sequence of rules (d(1), d(2), ....d(n))
such that φ(k) ≡ (d(1), ..., d(k)). Suppose that there exists at least one neutral or right-
biased rule in the sequence. Then unless all rules in the sequence are right-biased (Case 1),
there must exist m and m′ > m such that ρ(φ(m′)) = ρ(φ(m)) (Case 2). We will show that
in each case, there is an alternative trajectory (starting from the origin) that L strictly
prefers.

We’ll start with Case 2. By definition, φ(m′) is more complex than φ(m); let γ̂ =
γ(φ(m′))−γ(φ(m)). Let’s construct an alternative trajectory for L: Φ′ = (φ(0), φ(1), ..., φ(m−1), φ[m′], φ[m′+1], ..., φ[n])
with φ(m) = φ[m′]. This alternative trajectory Φ′ is defined by a sequence of rules that is
identical to the equilibrium rule sequence for the first m rules and the last n−m′ rules,
but omits all rules in between: (d(1), d(2), ..., d(m), d(m′+1), ..., d(n)). We claim that under
Φ′, L’s continuation value at any policy φ[k] (denoted by V Φ′

L

(
φ[k], L

)
) with k ≥ m′ is

strictly greater than his continuation value at φ(k) under Φ (V Φ
L (φ(k), L)). This claim,

once verified, then implies that V Φ′
L (φ(k), L) > V Φ

L (φ(k), L) for all k < m, and thus that L
strictly prefers Φ′ to Φ.

To keep notation uncluttered, we’ll perform the calculation for k = m′; the case
k > m′ is identical. For each l ≥ m′, let

(
φl[0], φ

l
[1], ..., φ

l
[nl]

)
be R’s trajectory starting

from φ[l] = φl[0], and let
(
φl(0), φ

l
(1), ..., φ

l
(nl)

)
be R’s trajectory starting from φ(l) = φl(0).

Notice that πL(φl[k]) ≡ πL(φl(k)) + γ̂, with a special case being πL(φ[l]) ≡ πL(φ(l)) + γ̂.
We now show by induction that VL(φl[k], R) ≡ VL(φl(k), R) + γ̂

r for k ≥ 0. Start with the
observation that

VL(φl(nl), R) =
πL(φl(nl))

r
,

VL(φl[nl], R) =
πL(φl[nl])

r
= VL(φl(nl), R) + γ̂

r
,

so the claim holds for k = nl. Now, suppose that the induction claim holds for k > 0.
Then the claim holds for k − 1 as well:

VL(φl(k−1), R) =
πL(φl(k−1))
r + p

+ p

r + p
VL(φl−1

(k) , R), and

VL(φl[k−1], R) =
πL(φl[k−1])
r + p

+ p

r + p
VL(φl[k], R)

=
πL(φl(k−1)) + γ̂

r + p
+ p

r + p

(
VL(φl[k], R) + γ̂

r

)
= VL(φl(k−1), R) + γ̂

r
.
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Our claim thus holds by induction. We then perform a further round of induction to show
that V Φ′

L (φm′[0] , L) ≡ VL(φm′(0), L) + γ̂
r for l ≥ m′. Start with

VL(φn(0), R) =
πL(φn(0))
r + λ

+ λ

r + λ
VL(φn(0), R),

VL(φn[0], R) =
πL(φn[0])
r + λ

+ λ

r + λ
VL(φn[0], R)

=
πL(φn(0)) + γ̂

r + λ
+ λ

r + λ

(
VL(φn(0), R) + γ̂

r

)
= VL(φn(0), R) + γ̂

r
.

so the claim holds for l = n. Now, suppose that the induction claim holds for l > m′.
Then the claim holds for l − 1 as well:

V Φ
L (φ(l−1), L) =

πL(φ(l−1))
r + λ+ p

+ p

r + λ+ p
V Φ
L (φ(l)) + λ

r + λ+ p
VL(φl−1

(0) , R),

V Φ′
L (φ[l−1]) =

πL(φ[l−1])
r + λ+ p

+ p

r + λ+ p
V Φ′
L (φ[l]) + λ

r + λ+ p
VL(φl−1

[0] , R)

=
πL(φ(l−1)) + γ̂

r + λ+ p
+ p

r + λ+ p

(
V Φ
L (φ(l)) + γ̂

r

)
+ λ

r + λ+ p

(
VL(φl−1

(0) , R) + γ̂

r

)
= V Φ

L (φ(l−1), L) + γ̂

r
.

The claim thus follows for Case 2.
Now, let’s return to Case 1. In this case, L’s continuation value starting from φ(n−1) is

VL(φ(n−1), L) =
πL(φ(n−1))
λ+ p+ r

+ p

p+ λ+ r
VL(φ(n), L) +

λVL(φ(n−1), R)
λ+ p+ r

=
πL(φ(n−1))
λ+ p+ r

+ p

p+ λ+ r

(
πL(φ(n))
λ+ r

+
λVL(φ(n), R)

λ+ r

)
+
λVL(φ(n−1), R)
λ+ p+ r

>
πL(φ(n))
λ+ r

+ λ

λ+ r
VL(φ(n), R)

= VL(φ(n)),

where the last inequality follows from the observations that πL(φ(n)) < πL(φ(n−1)) and
VL(φ(n), R) < VL(φ(n−1), R). This contradicts the fact that L’s continuation value must
be weakly increasing as he moves along his trajectory: VL(φ(n), L) ≥ VL(φ(n−1), L). Our
claim thus holds in this case. �

Lemma 7 Define ζ
R

= 1+ q

p
(

1−( p
p+r )ρ̂L+ρ̂R

) , and define φ(n) as follows: φ(n) ≡ (−1,−1, · · · ,−1︸                ︷︷                ︸
ρ̂L

, 0, 0, · · · , 0︸        ︷︷        ︸
n−ρ̂L

)

for n > ρ̂L, and φ(n) ≡ (−1,−1, · · · ,−1︸                ︷︷                ︸
n

) for n ≤ ρ̂L. If ζR < ζ
R

, then R will undo at

any φ(n).

Proof. Borrowing from the proof of Lemma 4, we can calculate that (i) if n ≤ ρ̂L,
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R prefers to undo rather than extend at φ(n) (equivalently, V0 (φ) < V1 (φ)) if ζR ≤
1 + 2q

(p−q)
(

1−( p
p+r )n+ρ̂R

) , and that (ii) if n > ρ̂L, R prefers to undo rather than extend

at φ(n) (equivalently, V0 (φ) < V1 (φ)) if ζR ≤ 1 + q

p
(

1−( p
p+r )ρ̂L+ρ̂R

) . Combining these

conditions, we conclude that R will undo at any φ(n) if ζR ≤ 1 + q

p
(

1−( p
p+r )ρ̂L+ρ̂R

) = ζ
R

Lemma 8 There exists ζ
R
> 1 such that if ζR < ζ

R
, then for some h ≥ 0, L’s equilibrium

policy trajectory Φh = (φ(0), φ(1), ..., φ(h)) takes the following form:

φ(n) ≡ (−1,−1, · · · ,−1︸                ︷︷                ︸
ρ̂L

, 0, 0, · · · , 0︸        ︷︷        ︸
n−ρ̂L

)

for n > ρ̂L, and
φ(n) ≡ (−1,−1, · · · ,−1︸                ︷︷                ︸

n

)

for n ≤ ρ̂L.

Proof. Choose ζR < ζ
R

from Lemma 8, so R will undo at any φ(n). Before we go on,
note that for all n, φ(n) maximizes L’s instantaneous payoff amongst all policies with
complexity n. This fact (call it Fact A) will come in useful soon.

We will start by proving, by induction, the following claim (which we call Fact B): for
any n,

VL(φ(n), R) ≡ arg max
φ
{VL(φ,R) : γ(φ) = n}, (6)

with the maximization strict for n ≥ 1. First, note that this statement is trivially (albeit
weakly) true for n = 0, because there is only one policy with zero complexity. Let us
suppose that the induction hypothesis holds for n; then we will show that it holds for
n+ 1 as well. We know that R will undo φn+1 towards φn, so we have

VLR(φ(n+1)) =
πL(φ(n+1))
r + q

+
qVL(φ(n), R)

r + q
. (7)

Consider an alternative policy φ′ with the same complexity n+ 1. We seek to show that
VL(φ′, R) < VL(φ(n+1), R). We have

VL(φ′, R) = πL(φ′)
r + q

+ qVL(φ′′, R)
r + q

. (8)

where φ′′ is the second policy on L’s trajectory starting from φ′. Now, we know (via Fact
A) that π(φ(n+1)) ≥ π(φ′). So, comparing equations (7) and (8), we simply need to show
that VL(φ(n), R) > VL(φ′′, R) to verify our claim that VL(φ(n+1), R) > VL(φ′, R). There
are two cases to consider. First, suppose R undoes at φ′. Then φ′′ has complexity n; so
VL(φ(n), R) > VL(φ′′, R) via the induction hypothesis. Second, suppose R extends at φ′.
Let Φ′R = (φ′[0], φ

′
[1], ..., φ

′
[n′
R

]) be R’s equilibrium trajectory starting from φ′ = φ′[0], and
let ΦR = (φ[0], φ[1], ..., φ[nR]) be R’s equilibrium trajectory starting from φ(n+1) = φ[0].
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Notice that (φ[0], φ[1], ..., φ[n+1]) = (φ(n+1), φ(n−1), ..., φ(0)); i.e. starting from φ(n+1), R
retraces L’s steps in reverse. Notice also that ΦR contains weakly more steps than Φ′R:

n′R = ρ̂R + ρ̂L ≤ nR,

with strict inequality if n + 1 > ρ̂L. As a first step, we’ll show that in a step-by-step
comparison, ΦR is more profitable than Φ′R. Let ρ0 = min{0, n+ 1− ρ̂L}. For k ≤ n′R,

πρL(φ′[k]) =
∣∣∣ρ̂L − ρ(φ′[k])

∣∣∣ =
∣∣∣ρ̂L − ρ(φ′[0]) + k

∣∣∣ ≥ min{k − ρ0, 0} ≥ πρL(φ[k]),

πγL(φ′[k]) = n+ 1 + k ≥ πγL(φ[k]),

so πL(φ′[k]) < πL(φ[k]) (with strict inequality for k ≥ 1). Further, for n′R < k < nR,

πρL(φ′[n′
R

]) = ρ̂L + ρ̂R ≥ πρL(φ[k]),

πγL(φ′[n′
R

]) = n+ 1 + nR > max{n, ρ̂R} ≥ πγL(φ[k]),

so πL(φ′[n′
R

]) < πL(φ[k]). With these results in hand, we’ll show by induction that
for k ≤ n′R, we have VL(φ[k], R; ΦR) > VL(φ′[k], R; Φ′R). To initialize, note from our
previous calculations that all policies on the trajectory ΦR have πL(φ[k]) > πL(φ′[n′

R
]), so

VL(φ[n′
R

], R; ΦR) > VL(φ′[n′
R

], R; Φ′R). Next, suppose the induction hypothesis holds for k.
Then, by our induction hypothesis,

VL(φ[k−1], R; ΦR) =
πL(φ[k−1])
r + p

+
pVL(φ[k], R; ΦR)

r + p

>
πL(φ′[k−1])
r + p

+
pVL(φ′[k], R; Φ′R)

r + p
= VL(φ′[k−1], R; Φ′R).

It follows by induction that VL(φ[0], R; ΦR) > VL(φ′[0], R; Φ′R), or equivalently that
VL(φ(n+1), R) > VL(φ′, R), as we claimed.

Having established (6), we now consider a trajectory Φ′m = (φ′(0), φ
′
(1), ..., φ

′
(m)) with

length m (note this means that φ′(m) has complexity m) such that φ′(m) , φm. Let
V

Φ′m
L (φ′(k)) be the continuation value under this trajectory at policy φ′(k). Also, let
V Φm
L (φ(k)) be the continuation value under the trajectory Φm at policy φ(k), with k ≤ m.

We claim that for all k ≤ m, V Φ′m
L (φ′(k), L) ≤ V Φm

L (φ(k), L) (with strict inequality for
k = 0). This claim, once verified, establishes that starting from the origin, L prefers the
trajectory Φm over any other Φ′m, and thus establishes our lemma.

We proceed by induction. Start by comparing

V Φm
L (φ(m), L) =

πL(φ(m))
r + λ

+
λVL(φ(m), R)

r + λ
, and

V
Φ′m
L (φ′(m), L) =

πL(φ′(m))
r + λ

+
λVL(φ′(m), R)

r + λ
;

noting that π(φ(m)) ≥ π(φ′(m)) (from Fact A) and that VL(φ(m), R) > VL(φ′(m), R) (from
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Fact B), we obtain V Φm
L (φ(m), L) > V

Φ′m
L (φ′(m), L). Now, our induction step: suppose that,

for given k ≤ m, we have V Φm
L (φ(k)) > V

Φ′m
L (φ′(k)). Then we claim that this statement

holds for k − 1 as well. To show this, compare

V Φm
L (φ(k−1), L) =

πL(φ(k−1))
r + p+ λ

+
pV Φm

L (φ(k), L)
r + p+ λ

+
λVL(φ(k−1), R)
r + p+ λ

, and

V
Φ′m
L (φ′(k−1), L) =

πL(φ′(k−1))
r + p+ λ

+
pV

Φ′m
L (φ′(k), L)
r + p+ λ

+
λVL(φ′(k−1), R)
r + p+ λ

;

noting from Fact A that πL(φ(k−1)) ≥ πL(φ′(k−1)), from Fact B that VL(φ(k−1), R) >
VL(φ′(k−1), R), and from our induction hypothesis that V Φm

L (φ(k), L) > V
Φ′m
L (φ′(k)), it

follows that V Φm
L (φ(k−1), L) > V

Φ′m
L (φ′(k−1)). Thus our induction hypothesis holds, and

so does our claim.

Proposition 9 Suppose ζR > ζ̄R. Then L extends left at the origin if and only if ζL > ζ
L

.
Otherwise, if ζL < ζ

L
, then L will stagnate at the origin.

Proof of Proposition 9 Borrow ζ̄R from Lemma 4, so that for ζR > ζ̄R, player R
always extends at any policy that is not R-ideal. Lemma 6 then states that L either
stagnates or extends leftward at the origin. We show that there exists a ζ̄L such that for
ζL > ζ̄L, L will extend at the origin.

Let V R be the continuation payoff for player L at origin when R is in control. Then the
value functions for player L from staying at origin φ0, and at φ−1 = (−1) are, respectively,

V L (φ0, L) ≡ ζLρ̂L + λV L (φ0, R)
λ+ r

and V L (φ−1, L) ≡
ζL (ρ̂L + 1)− 1 + λ

−ζL(ρ̂L+1)−1+p(V L(φ0,R)− 2
r )

p+r

λ+ r
.

Note that
r

(
V L (φ0, R)− 2

r

)
< ζL (ρ̂L + 1)− 1︸               ︷︷               ︸

πL at φ=(−1)

.

Therefore, V L (φ−1, R) > −ζL(ρ̂L+1)−1+λ(V L(φ−1,R)− 2
r )

λ+r , which implies
(λ+ r)

(
V L (φ−1, L)− V L (φ0, L)

)
> ζL − 2λ

r > 0.

Lemma 9 Suppose ζL > 2λ/r. Then L extends at the origin, and does not stagnate if
the policy is not R-ideal.

Proof. Let φ′0 be a policy that solely consists of left-biased rules such that ρ
(
φ′−1

)
> ρ̂L,

where φ′−1 = φ
′

0 t (−1). An analogous proof to Proposition 9 proves that

(λ+ r)
(
V L
(
φ′−1, L

)
− V L (φ,0 , L)

)
> ζL −

2λ
r

.

Therefore, we have the required result.
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Proof of Proposition ?? We consider the case where R is moderate; the case where
L is moderate is covered in Proposition ??.

Let Φ∗L be the set of policies φ such that (i) ρ (φ) = ρ̂∗L, and (ii) the last rule in φ is
0. Then, we show that there exists a ζ1

R
such that if ζR < ζ1

R
then R prefers to undo

exactly once than extend at any φ ∈ Φ∗L. Also note that there exists a ζ2
R

such that if
ζR < ζ2

R
then R does any policies φ that only consists of −1 and γ (φ) ≤ ρ̂∗L. Then if

ζR < min
{
ζ1
R
, ζ2
R

}
, then L extends to L-ideal policy, and then either extends by adding

0, or stagnates. In either case, the kludge will not persist in the long run. �

Proof of Proposition ??
First observe that since ζR > ζ̄R L never extends by adding 1 or 0 on the equilibrium

trajectory. Also, note that for any m > m̄ (ζL) ≡ (ζL + 1) ρ̂, L does not extend to
φm, where φm is the policy that consists of −1 rules with complexity of m. Fix an ζ0

L, and
define m̄ = m̄ (ζL). For any m < m̄, there exists a ζm

L
such that L prefers to stagnates

at φm than extending to φm+1. Therefore, if we define ζ
L

= minm∈{0,1,··· ,m̄} ζmL , then L

stagnates at the origin if ζL < ζ
L

and ζR > ζ̄R ≡ ζR
(
ζ̃L
)
. �

Proof of Proposition 6
Recall the proof of Proposition ??. Then, L extends to φ∗L and either extends by

adding 0 or stagnates. The value functions at L’s optimal policy φ∗L and φ∗L t (0) are

V1 = ρ̂L + λV R

r + λ
and V2 =

ρ̂L − 1 + λ ρ̂L−1+pV R
r+p

r + λ
.

Note that V R < 0 is decreasing in ζL and

(r + λ) (V2 − V1) = −1 + λ
ρ̂L − 1− rV R

r + p
.

Proof of Proposition 7 Fix r, and consider ζR and ζL that satisfy ζR > ζ̄R (r) ≡
1 + 2q

(p−q)( r
p+r ) and ζL > ζ̃L (r) ≡ 2λ

r . Then by Lemma 4 and Lemma 9, we know that L
prefers extending to L’s optimal policy φ∗L and stagnates, than stagnating at the origin.
So we only need to see when L wants to extends by adding −1 at φ∗L.

The value functions for player L from staying at φ∗L, and at φ = φ∗L t (−1) are,
respectively,

V L (φ∗L, L) ≡ ρ̂L + λV L (φ∗L, R)
λ+ r

and

V L (φ∗L t (−1) , L) ≡
− (ζL − ρ̂L + 1) + λ

−(ζL−ρ̂L+1)+p(V L(φ∗L,R)− 2
r )

p+r

λ+ r
.

Below we show that there exists an r such that r < r implies V L (φ∗L t (−1) , L) −
V L (φ∗L, L) is linear and increasing in ζL.
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Now, observe that

V L (φ∗L t (−1) , L) > V L (φ∗L, L)

iff λ
(
ρ̂L − rV L (φ∗L, R)

)
> (p+ r + λ) (ζL + 1)− 2λp

r
.

Moreover, note that

λ
(
ρ̂L − rV L (φ∗L, R)

)
− (p+ r + λ) (ζL + 1)− 2λp

r

≥ λ
(
ρ̂L − rV L (φ∗L, R)

)
− (p+ r + λ) (ζL + 1)− pζL (by ζL >

2λ
r

)

≥ λ
(
ρ̂L − rV L (φ∗L, R)

)
− (2p+ r + λ) (ζL + 1) .

Now define Γ (ζL, r) ≡ λ
(
ρ̂L − rV L (φ∗L, R)

)
− (2p+ r + λ) (ζL + 1). Next, observe

that since V L (φ∗L, R) is linear in ζL, so is Γ (ζL, r). Therefore, ∂Γ(ζL,r)
∂ζL

is not a function
of ζL, and

lim
r→0

∂Γ (ζL, r)
∂ζL

= lim
r→0

∂λ
(
ρ̂L − rṼ R

)
∂ζL

− (2p+ r + λ)

= −2λρ̂L − (2p+ r + λ) ,

where the second equality follows from limr→0
(
ρ̂L − rV L (φ∗L, R)

)
= −2ρ̂L (ζL + 1). Since

λ > 2p and ρ̂L ≤ −1, limr→0
∂Γ(ζL,r)
∂ζL

> 0. Therefore, there exists an r such that for all
r < r, ζ ′L > ζL and Γ (ζL, r) > 0, imply Γ (ζ ′L, r) > 0.

Now that we have established that V L (φ∗L t (−1) , L) − V L (φ∗L, L) is linear and
increasing in ζL for any r < r. Therefore, for any r < r, there exists a ζ̂L (r) such
that ζL > ζ̂L (r) if and only if V L (φ∗L t (−1) , L) > V L (φ∗L, L). Therefore, if we define
ζ̄L (r) = max

{
ζ̄R (r) , ζ̂L (r)

}
, we have the required result.�

Proof of Proposition 8
First, we show that there exists an h̄ such that for any p and q, L does not extend any

policy that is more complex than h̄, irrespective of R’s strategy. To see this, consider a
policy φ such that

φ =

−1,−1, · · · ,−1︸                ︷︷                ︸
ρ̂L

, 0, 0, · · · , 0︸        ︷︷        ︸
h−ρ̂L

 .

That is, φ is L-ideal and has complexity h. Therefore, L’s instantaneous payoff from any
policy that is at least as complex as φ is strictly lower than that of at φ, i.e., πL (φ) =
− (h− ρ̂L). Now let π̃L be L’s instantaneous payoff at R’s optimal policy. If L extends
to φ in an equilibrium, then L’s strategy has to satisfy − (h− ρ̂L) > π̃L = (2ζL + 1) ρ̂L.
This proves that L does not extend to any policy with complexity of more than h̄ ≡ 2ζLρ̂L.

Next, consider a policy φ. Let φE be the policy that an R-favoured rule is added to
φ. Similarly, let φU be the policy without the last rule in φ. Then the value functions of
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extending and undoing at φ are, respectively,

πR (φ) + pV
(
φE
)

p+ r
and

πR (φ) + qV
(
φU
)

q + r

Note that limχ→0
(
V
(
φU
)
− V

(
φE
))
≥ 1/r. Therefore, as χ → 0, πR(φ)+qV (φU)

q+r −
πR(φ)+pV (φE)

p+r → α for some α ≥ 1/r. Therefore, for any χ < χ (φ), R undoes at φ. Thus
if we define χ ≡ minφ∈Φh χ (φ), where Φh̄ is the set of policies that has length k ≤ h, then
R undoes any policy that L reaches with a positive probability on the equilibrium. This
proves the first part of the proposition.

Similarly, note that

lim
χ→∞

(
πR (φ) + pV

(
φE
)

p+ r
−
πR (φ) + qV

(
φU
)

q + r

)

≥ lim
χ→∞

πR (φ) + p
(
πR(φ)+(ζR−1)

r

)
p+ r

−
πR (φ) + q

(
πR(φ)+(ζR+1)

r

)
q + r


= lim
χ→∞

(
r (p− q) ζR − (2qp+ (p+ q) r)

r (p+ r) (q + r)

)
= limχ→∞ ((p− q) ζR − (p+ q))

r2 > 0.

Therefore, there exists a χ (φ) such that χ > χ (φ) implies R extends at φ. If we define
χ (φ) ≡ maxφ∈Φh̄ χ (φ), then we have the required result. �
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